Totally Disconnected but Connected Set must be Singleton

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \struct {S, \tau}$ be a topological space.

Let $H \subseteq S$ be both totally disconnected and connected.

Then $H$ is a singleton.


Proof

If $H$ is totally disconnected then its individual points are separated.

If $H$ is connected it can not be represented as the union of two (or more) separated sets.

So $H$ can have only one point in it.

$\blacksquare$


Sources