Transfinite Recursion Theorem/Formulation 4

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\On$ denote the class of all ordinals.

Let $g$ be a mapping defined for all sets.

Let $c$ be a set.


Then there exists a unique $\On$-sequence $S_0, S_1, \dots, S_\alpha, \dots$ such that:

\((1)\)   $:$      \(\ds S_0 \)   \(\ds = \)   \(\ds c \)      
\((2)\)   $:$     \(\ds \forall \alpha \in \On:\)    \(\ds S_{\alpha + 1} \)   \(\ds = \)   \(\ds \map g {S_\alpha} \)      
\((3)\)   $:$     \(\ds \forall \lambda \in K_{II}:\)    \(\ds S_\lambda \)   \(\ds = \)   \(\ds \bigcup_{\alpha \mathop < \lambda} S_\alpha \)      

where $K_{II}$ denotes the class of all limit ordinals.


Proof

This is a special case of the Transfinite Recursion Theorem: Formulation $3$.

Recall:

Let $\On$ denote the class of all ordinals.

Let $h$ and $f$ be mappings defined for all sets.

Let $c$ be a set.


Then there exists a unique mapping $F$ on $\On$ such that:

\((1)\)   $:$      \(\ds \map F 0 \)   \(\ds = \)   \(\ds c \)      
\((2)\)   $:$     \(\ds \forall \alpha \in \On:\)    \(\ds \map F {\alpha^+} \)   \(\ds = \)   \(\ds \map h {\map F \alpha} \)      
\((3)\)   $:$     \(\ds \forall \lambda \in K_{II}:\)    \(\ds \map F \lambda \)   \(\ds = \)   \(\ds \map f {F \sqbrk \lambda} \)      

where $K_{II}$ denotes the class of all limit ordinals.

$\Box$


Set $\map f x = \bigcup x$, so that:

$\map f {F \sqbrk \lambda}$

is then:

$\ds \bigcup_{\alpha \mathop < \lambda} \map F \alpha$

Let $S_\alpha$ be the set $\map F \alpha$

and the given form of the Transfinite Recursion Theorem follows.


It remains to demonstrate uniqueness of $S_0, S_1, \dots, S_\alpha, \dots$.




Sources