Translation Mapping is Bijection

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, +}$ be an abelian group.

Let $g \in G$.


Let $\tau_g: G \to G$ be the translation by $g$:

$\forall h \in G: \map {\tau_g} h = h + \paren {-g}$

where $-g$ is the inverse of $g$ with respect to $+$ in $G$.


Then $\tau_g$ is a bijection.


Proof

Proof of Injectivity

\(\ds \forall h_1, h_2 \in G: \, \) \(\ds \map {\tau_g} {h_1}\) \(=\) \(\ds \map {\tau_g} {h_2}\)
\(\ds \leadsto \ \ \) \(\ds h_1 + \paren {-g}\) \(=\) \(\ds h_2 + \paren {-g}\) Definition of $\tau_g$
\(\ds \leadsto \ \ \) \(\ds h_1\) \(=\) \(\ds h_2\) Cancellation Laws

$\Box$


Proof of Surjectivity

\(\ds \forall h_1 \in G: \exists h_2 \in G: \, \) \(\ds h_1 + g\) \(=\) \(\ds h_2\)
\(\ds \leadsto \ \ \) \(\ds h_1\) \(=\) \(\ds h_2 + \paren {-g}\)
\(\ds \leadsto \ \ \) \(\ds h_1\) \(=\) \(\ds \map {h_2} g\) Definition of $\tau_g$

$\blacksquare$