Triangular Number Pairs with Triangular Sum and Difference

From ProofWiki
Jump to navigation Jump to search

Theorem

The sequence of pairs of triangular numbers whose sum and difference are also both triangular begins:

$\tuple {15, 21}, \tuple {105, 171}, \tuple {378, 703}, \tuple {780, 990}, \tuple {1485, 4186}, \tuple {2145, 3741}, \tuple {5460, 6786}, \tuple {7875, 8778}$

The sequence of the first elements is A185129 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).

The sequence of the second elements is A185128 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).


Examples

$T_5$ and $T_6$

The triangular numbers $T_5$ and $T_6$ have sum and difference which are themselves both triangular:


\(\ds T_5\) \(=\) \(\ds \frac {5 \times 6} 2\) $= 15$
\(\ds T_6\) \(=\) \(\ds \frac {6 \times 7} 2\) $= 21$


\(\ds T_6 - T_5\) \(=\) \(\ds 21 - 15\)
\(\ds \) \(=\) \(\ds 6\)
\(\ds \) \(=\) \(\ds \dfrac {3 \times 4} 2\)
\(\ds \) \(=\) \(\ds T_3\)


\(\ds T_6 + T_5\) \(=\) \(\ds 21 + 15\)
\(\ds \) \(=\) \(\ds 36\)
\(\ds \) \(=\) \(\ds \dfrac {8 \times 9} 2\)
\(\ds \) \(=\) \(\ds T_8\)

$\blacksquare$


$T_{14}$ and $T_{18}$

The triangular numbers $T_{14}$ and $T_{18}$ have sum and difference which are themselves both triangular:


\(\ds T_{14}\) \(=\) \(\ds \frac {14 \times 15} 2\) $= 105$
\(\ds T_{18}\) \(=\) \(\ds \frac {18 \times 19} 2\) $= 171$


\(\ds T_{18} - T_{14}\) \(=\) \(\ds 171 - 105\)
\(\ds \) \(=\) \(\ds 66\)
\(\ds \) \(=\) \(\ds \dfrac {11 \times 12} 2\)
\(\ds \) \(=\) \(\ds T_{11}\)


\(\ds T_{18} + T_{14}\) \(=\) \(\ds 171 + 105\)
\(\ds \) \(=\) \(\ds 276\)
\(\ds \) \(=\) \(\ds \dfrac {23 \times 24} 2\)
\(\ds \) \(=\) \(\ds T_{23}\)

$\blacksquare$


$T_{27}$ and $T_{37}$

The triangular numbers $T_{27}$ and $T_{37}$ have sum and difference which are themselves both triangular:


\(\ds T_{27}\) \(=\) \(\ds \frac {27 \times 28} 2\) $= 378$
\(\ds T_{37}\) \(=\) \(\ds \frac {37 \times 38} 2\) $= 703$


\(\ds T_{37} - T_{27}\) \(=\) \(\ds 703 - 378\)
\(\ds \) \(=\) \(\ds 325\)
\(\ds \) \(=\) \(\ds \frac {25 \times 26} 2\)
\(\ds \) \(=\) \(\ds T_{25}\)


\(\ds T_{37} + T_{27}\) \(=\) \(\ds 703 + 378\)
\(\ds \) \(=\) \(\ds 1081\)
\(\ds \) \(=\) \(\ds \frac {46 \times 47} 2\)
\(\ds \) \(=\) \(\ds T_{46}\)

$\blacksquare$


$T_{39}$ and $T_{44}$

The triangular numbers $T_{39}$ and $T_{44}$ have sum and difference which are themselves both triangular:


\(\ds T_{39}\) \(=\) \(\ds \frac {39 \times 40} 2\) $= 780$
\(\ds T_{44}\) \(=\) \(\ds \frac {44 \times 45} 2\) $= 990$


\(\ds T_{44} - T_{39}\) \(=\) \(\ds 990 - 780\)
\(\ds \) \(=\) \(\ds 210\)
\(\ds \) \(=\) \(\ds \dfrac {20 \times 21} 2\)
\(\ds \) \(=\) \(\ds T_{20}\)


\(\ds T_{44} + T_{39}\) \(=\) \(\ds 990 + 780\)
\(\ds \) \(=\) \(\ds 1770\)
\(\ds \) \(=\) \(\ds \dfrac {59 \times 60} 2\)
\(\ds \) \(=\) \(\ds T_{59}\)

$\blacksquare$


$T_{1869}$ and $T_{2090}$

The triangular numbers $T_{1869}$ and $T_{2090}$ have sum and difference which are themselves both triangular:


\(\ds T_{1869}\) \(=\) \(\ds \frac {1869 \times 1870} 2\) \(\ds = 1 \, 747 \, 515\)
\(\ds T_{2090}\) \(=\) \(\ds \frac {2090 \times 2091} 2\) \(\ds = 2 \, 185 \, 095\)


\(\ds T_{2090} - T_{1869}\) \(=\) \(\ds 2 \, 185 \, 095 - 1 \, 747 \, 515\)
\(\ds \) \(=\) \(\ds 437 \, 580\)
\(\ds \) \(=\) \(\ds \dfrac {935 \times 936} 2\)
\(\ds \) \(=\) \(\ds T_{935}\)


\(\ds T_{2090} + T_{1869}\) \(=\) \(\ds 2 \, 185 \, 095 - 1 \, 747 \, 515\)
\(\ds \) \(=\) \(\ds 3 \, 932 \, 610\)
\(\ds \) \(=\) \(\ds \dfrac {2804 \times 2805} 2\)
\(\ds \) \(=\) \(\ds T_{2804}\)

$\blacksquare$


Sources