Trigonometric Functions in terms of each other

From ProofWiki
Jump to navigation Jump to search

Theorem

Sine in terms of Cosine

\(\ds \sin x\) \(=\) \(\ds +\sqrt {1 - \cos ^2 x}\) if there exists an integer $n$ such that $2 n \pi < x < \paren {2 n + 1} \pi$
\(\ds \sin x\) \(=\) \(\ds -\sqrt {1 - \cos ^2 x}\) if there exists an integer $n$ such that $\paren {2 n + 1} \pi < x < \paren {2 n + 2} \pi$


Sine in terms of Tangent

\(\ds \sin x\) \(=\) \(\ds +\frac {\tan x} {\sqrt {1 + \tan^2 x} }\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \sin x\) \(=\) \(\ds -\frac {\tan x} {\sqrt {1 + \tan^2 x} }\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$


Sine in terms of Cotangent

Sine in terms of Cotangent

Sine in terms of Secant

\(\ds \sin x\) \(=\) \(\ds + \frac {\sqrt{\sec ^2 x - 1} } {\sec x}\) if there exists an integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$
\(\ds \sin x\) \(=\) \(\ds - \frac {\sqrt{\sec ^2 x - 1} } {\sec x}\) if there exists an integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$


Sine is Reciprocal of Cosecant

$\sin \theta = \dfrac 1 {\csc \theta}$


Cosine in terms of Sine

\(\ds \cos x\) \(=\) \(\ds +\sqrt {1 - \sin^2 x}\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \cos x\) \(=\) \(\ds -\sqrt {1 - \sin^2 x}\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$


Cosine in terms of Tangent

\(\ds \cos x\) \(=\) \(\ds +\frac 1 {\sqrt {1 + \tan^2 x} }\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \cos x\) \(=\) \(\ds -\frac 1 {\sqrt {1 + \tan^2 x} }\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$


Cosine in terms of Cotangent

\(\ds \cos x\) \(=\) \(\ds +\frac {\cot x} {\sqrt {1 + \cot^2 x} }\) if there exists an integer $n$ such that $2 n \pi < x < \paren {2 n + 1} \pi$
\(\ds \cos x\) \(=\) \(\ds -\frac {\cot x} {\sqrt {1 + \cot^2 x} }\) if there exists an integer $n$ such that $\paren {2 n - 1} \pi < x < 2 n \pi$


Cosine is Reciprocal of Secant

$\cos \theta = \dfrac 1 {\sec \theta}$


Cosine in terms of Cosecant

Cosine in terms of Cosecant

Tangent in terms of Sine

Tangent in terms of Sine

Tangent in terms of Cosine

Tangent in terms of Cosine

Tangent is Reciprocal of Cotangent

$\tan \theta = \dfrac 1 {\cot \theta}$


Tangent in terms of Secant

\(\ds \tan x\) \(=\) \(\ds +\sqrt {\sec^2 x - 1}\) if there exists an integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$
\(\ds \tan x\) \(=\) \(\ds -\sqrt {\sec^2 x - 1}\) if there exists an integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$


Tangent in terms of Cosecant

Tangent in terms of Cosecant

Cotangent in terms of Sine

Cotangent in terms of Sine

Cotangent in terms of Cosine

Cotangent in terms of Cosine

Cotangent is Reciprocal of Tangent

$\cot \theta = \dfrac 1 {\tan \theta}$


Cotangent in terms of Secant

Cotangent in terms of Secant

Cotangent in terms of Cosecant

Cotangent in terms of Cosecant

Secant in terms of Sine

Secant in terms of Sine

Secant is Reciprocal of Cosine

$\sec \theta = \dfrac 1 {\cos \theta}$


Secant in terms of Tangent

\(\ds \sec x\) \(=\) \(\ds +\sqrt {\tan ^2 x + 1}\) if there exists an integer $n$ such that $\paren {2 n - \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 1 2} \pi$
\(\ds \sec x\) \(=\) \(\ds -\sqrt {\tan ^2 x + 1}\) if there exists an integer $n$ such that $\paren {2 n + \dfrac 1 2} \pi < x < \paren {2 n + \dfrac 3 2} \pi$


Secant in terms of Cotangent

Secant in terms of Cotangent

Secant in terms of Cosecant

Secant in terms of Cosecant

Cosecant is Reciprocal of Sine

$\csc \theta = \dfrac 1 {\sin \theta}$


Cosecant in terms of Cosine

Cosecant in terms of Cosine

Cosecant in terms of Tangent

Cosecant in terms of Tangent

Cosecant in terms of Cotangent

Cosecant in terms of Cotangent

Cosecant in terms of Secant

Cosecant in terms of Secant