Trigonometric Identities
Jump to navigation
Jump to search
Compound Angle Formulas
Addition Formulas
Sine of Sum
- $\map \sin {a + b} = \sin a \cos b + \cos a \sin b$
Cosine of Sum
- $\map \cos {a + b} = \cos a \cos b - \sin a \sin b$
Tangent of Sum
- $\map \tan {a + b} = \dfrac {\tan a + \tan b} {1 - \tan a \tan b}$
Subtraction Formulas
Sine of Difference
- $\map \sin {a - b} = \sin a \cos b - \cos a \sin b$
Cosine of Difference
- $\map \cos {a - b} = \cos a \cos b + \sin a \sin b$
Tangent of Difference
- $\map \tan {a - b} = \dfrac {\tan a - \tan b} {1 + \tan a \tan b}$
Sum of Squares of Sine and Cosine
- $\cos^2 x + \sin^2 x = 1$
Corollary 1
- $\sec^2 x - \tan^2 x = 1 \quad \text {(when $\cos x \ne 0$)}$
Corollary 2
- $\csc^2 x - \cot^2 x = 1 \quad \text {(when $\sin x \ne 0$)}$
Double Angle Formulas
Double Angle Formula for Sine
- $\sin 2 \theta = 2 \sin \theta \cos \theta$
Double Angle Formula for Cosine
- $\cos 2 \theta = \cos^2 \theta - \sin^2 \theta$
Double Angle Formula for Tangent
- $\tan 2 \theta = \dfrac {2 \tan \theta} {1 - \tan^2 \theta}$
Half Angle Formulas
Half Angle Formula for Sine
\(\ds \sin \frac \theta 2\) | \(=\) | \(\ds +\sqrt {\frac {1 - \cos \theta} 2}\) | for $\dfrac \theta 2$ in quadrant $\text I$ or quadrant $\text {II}$ | |||||||||||
\(\ds \sin \frac \theta 2\) | \(=\) | \(\ds -\sqrt {\dfrac {1 - \cos \theta} 2}\) | for $\dfrac \theta 2$ in quadrant $\text {III}$ or quadrant $\text {IV}$ |
Half Angle Formula for Cosine
\(\ds \cos \frac \theta 2\) | \(=\) | \(\ds +\sqrt {\frac {1 + \cos \theta} 2}\) | for $\dfrac \theta 2$ in quadrant $\text I$ or quadrant $\text {IV}$ | |||||||||||
\(\ds \cos \frac \theta 2\) | \(=\) | \(\ds -\sqrt {\frac {1 + \cos \theta} 2}\) | for $\dfrac \theta 2$ in quadrant $\text {II}$ or quadrant $\text {III}$ |
Half Angle Formula for Tangent
\(\ds \tan \frac \theta 2\) | \(=\) | \(\ds +\sqrt {\dfrac {1 - \cos \theta} {1 + \cos \theta} }\) | for $\dfrac \theta 2$ in quadrant $\text I$ or quadrant $\text {III}$ | |||||||||||
\(\ds \tan \frac \theta 2\) | \(=\) | \(\ds -\sqrt {\dfrac {1 - \cos \theta} {1 + \cos \theta} }\) | for $\dfrac \theta 2$ in quadrant $\text {II}$ or quadrant $\text {IV}$ |
where $\tan$ denotes tangent and $\cos$ denotes cosine.
When $\theta = \paren {2 k + 1} \pi$, $\tan \dfrac \theta 2$ is undefined.
Half Angle Formula for Tangent: Corollary 1
- $\tan \dfrac \theta 2 = \dfrac {\sin \theta} {1 + \cos \theta}$
Half Angle Formula for Tangent: Corollary 2
- $\tan \dfrac \theta 2 = \dfrac {1 - \cos \theta} {\sin \theta}$
Half Angle Formula for Tangent: Corollary 3
- $\tan \dfrac \theta 2 = \csc \theta - \cot \theta$
One Plus Tangent Half Angle over One Minus Tangent Half Angle
- $\dfrac {1 + \tan \frac x 2} {1 - \tan \frac x 2} = \sec x + \tan x$
Simpson's Formulas
Cosine by Cosine
- $\cos \alpha \cos \beta = \dfrac {\map \cos {\alpha - \beta} + \map \cos {\alpha + \beta} } 2$
Sine by Sine
- $\sin \alpha \sin \beta = \dfrac {\map \cos {\alpha - \beta} - \map \cos {\alpha + \beta} } 2$
Sine by Cosine
- $\sin \alpha \cos \beta = \dfrac {\map \sin {\alpha + \beta} + \map \sin {\alpha - \beta} } 2$
Cosine by Sine
- $\cos \alpha \sin \beta = \dfrac {\map \sin {\alpha + \beta} - \map \sin {\alpha - \beta} } 2$
Prosthaphaeresis Formulas
Sine plus Sine
- $\sin \alpha + \sin \beta = 2 \map \sin {\dfrac {\alpha + \beta} 2} \map \cos {\dfrac {\alpha - \beta} 2}$
Sine minus Sine
- $\sin \alpha - \sin \beta = 2 \map \cos {\dfrac {\alpha + \beta} 2} \map \sin {\dfrac {\alpha - \beta} 2}$
Cosine plus Cosine
- $\cos \alpha + \cos \beta = 2 \map \cos {\dfrac {\alpha + \beta} 2} \map \cos {\dfrac {\alpha - \beta} 2}$
Cosine minus Cosine
- $\cos \alpha - \cos \beta = -2 \, \map \sin {\dfrac {\alpha + \beta} 2} \, \map \sin {\dfrac {\alpha - \beta} 2}$
Sum Formulas for Sine and Cosine
Sine of x plus Cosine of x: Sine Form
- $\sin x + \cos x = \sqrt 2 \sin \left({x + \dfrac \pi 4}\right)$
Sine of x plus Cosine of x: Cosine Form
- $\sin x + \cos x = \sqrt 2 \, \map \cos {x - \dfrac \pi 4}$
Sine of x minus Cosine of x: Sine Form
- $\sin x - \cos x = \sqrt 2 \map \sin {x - \dfrac \pi 4}$
Sine of x minus Cosine of x: Cosine Form
- $\sin x - \cos x = \sqrt 2 \, \map \cos {x - \dfrac {3 \pi} 4}$
Cosine of x minus Sine of x: Sine Form
- $\cos x - \sin x = \sqrt 2 \, \map \sin {x + \dfrac {3 \pi} 4}$
Cosine of x minus Sine of x: Cosine Form
- $\cos x - \sin x = \sqrt 2 \, \map \cos {x + \dfrac \pi 4}$
Multiple of Sine plus Multiple of Cosine
Cosine Form
- $p \sin x + q \cos x = \sqrt {p^2 + q^2} \map \cos {x + \arctan \dfrac {-p} q}$
Sine Form
- $p \sin x + q \cos x = \sqrt {p^2 + q^2} \map \sin {x + \arctan \dfrac q p}$
Power Reduction Formulas
Square of Sine
- $\sin^2 x = \dfrac {1 - \cos 2 x} 2$
Square of Cosine
- $\cos^2 x = \dfrac {1 + \cos 2 x} 2$
Square of Tangent
- $\tan^2x = \dfrac {1 - \cos2x} {1 + \cos2x}$
Cube of Sine
- $\sin^3 x = \dfrac {3 \sin x - \sin 3 x} 4$
Cube of Cosine
- $\cos^3 x = \dfrac {3 \cos x + \cos 3 x} 4$
Fourth Power of Sine
- $\sin^4 x = \dfrac {3 - 4 \cos 2 x + \cos 4 x} 8$
Fourth Power of Cosine
- $\cos^4 x = \dfrac {3 + 4 \cos 2 x + \cos 4 x} 8$
Fifth Power of Sine
- $\sin^5 x = \dfrac {10 \sin x - 5 \sin 3 x + \sin 5 x} {16}$
Fifth Power of Cosine
- $\cos^5 x = \dfrac {10 \cos x + 5 \cos 3 x + \cos 5 x} {16}$
Minor Identities
Sum of Tangent and Cotangent
- $\tan x + \cot x = \sec x \csc x$
Tangent times Tangent plus Cotangent
- $\tan x \paren {\tan x + \cot x} = \sec^2 x$
Secant Minus Cosine
- $\sec x - \cos x = \sin x \tan x$
Square of Tangent Minus Square of Sine
- $\tan^2 x - \sin^2 x = \tan^2 x \ \sin^2 x$
Difference of Fourth Powers of Cosine and Sine
- $\sin^4 x - \cos^4 x = \sin^2 x - \cos^2 x$
Cosecant Minus Sine
- $\csc x - \sin x = \cos x \ \cot x$
Cotangent Minus Tangent
- $\cot x - \tan x = 2 \cot 2 x$
Sum of Cosecant and Cotangent
- $\csc x + \cot x = \cot {\dfrac x 2}$
Sum of Squares of Secant and Cosecant
- $\sec^2 x + \csc^2 x = \sec^2 x \csc^2 x$
Difference of Fourth Powers of Secant and Tangent
- $\sec^4 x - \tan^4 x = \sec^2 x + \tan^2 x$
Reciprocal of One Plus Sine
- $\dfrac 1 {1 + \sin x} = \dfrac 1 2 \map {\sec^2} {\dfrac \pi 4 - \dfrac x 2}$
Reciprocal of One Minus Sine
- $\dfrac 1 {1 - \sin x} = \dfrac 1 2 \map {\sec^2} {\dfrac \pi 4 + \dfrac x 2}$
Sum of Reciprocals of One Plus and Minus Sine
- $\dfrac 1 {1 - \sin x} + \dfrac 1 {1 + \sin x} = 2 \sec^2 x$
Difference of Reciprocals of One Plus and Minus Sine
- $\ds \frac 1 {1 - \sin x} - \frac 1 {1 + \sin x} = 2 \tan x \sec x$
Reciprocal of One Plus Cosine
- $\dfrac 1 {1 + \cos x} = \dfrac 1 2 \sec^2 \dfrac x 2$
Reciprocal of One Minus Cosine
- $\dfrac 1 {1 - \cos x} = \dfrac 1 2 \map {\csc^2} {\dfrac x 2}$
Sum of Secant and Tangent
- $\sec x + \tan x = \dfrac {1 + \sin x} {\cos x}$
Cosine over Sum of Secant and Tangent
- $\dfrac {\cos x} {\sec x + \tan x} = 1 - \sin x$
Secant Plus One over Secant Squared
- $\dfrac {\sec x + 1} {\sec^2 x} = \dfrac {\sin^2 x} {\sec x - 1}$
Sine Plus Cosine times Tangent Plus Cotangent
- $\paren {\sin x + \cos x} \paren {\tan x + \cot x} = \sec x + \csc x$
Tangent over Secant Plus One
- $\dfrac {\tan x} {\sec x + 1} = \dfrac {\sec x - 1} {\tan x}$
Squares of Linear Combination of Sine and Cosine
- $\paren {a \cos x + b \sin x}^2 + \paren {b \cos x - a \sin x}^2 = a^2 + b^2$
Reciprocal of One Minus Secant
- $\dfrac {\sin^2 x + 2 \cos x - 1} {\sin^2 x + 3 \cos x - 3} = \dfrac 1 {1 - \sec x}$
Reciprocal of One Plus Cosecant
- $\dfrac {\cos^2 x + 3 \sin x - 1} {\cos^2 x + 2 \sin x + 2} = \dfrac 1 {1 + \csc x}$