Union is Commutative/Family of Sets

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\family {S_i}_{i \mathop \in I}$ be an indexed family of sets.

Let $\ds I = \bigcup_{i \mathop \in I} S_i$ denote the union of $\family {S_i}_{i \mathop \in I}$.

Let $J \subseteq I$ be a subset of $I$.


Then:

$\ds \bigcup_{i \mathop \in I} S_i = \bigcup_{j \mathop \in J} S_j \cup \bigcup_{k \mathop \in \relcomp I J} S_k = \bigcup_{k \mathop \in \relcomp I J} S_k \cup \bigcup_{j \mathop \in J} S_j$

where $\relcomp I J$ denotes the complement of $J$ relative to $I$.


Proof

We have that both $\ds \bigcup_{j \mathop \in J} S_j$ and $\ds \bigcup_{k \mathop \in \relcomp I J} S_k$ are sets.

Hence by Union is Commutative we have:

$\bigcup_{j \mathop \in J} S_j \cup \bigcup_{k \mathop \in \relcomp I J} S_k = \bigcup_{k \mathop \in \relcomp I J} S_k \cup \bigcup_{j \mathop \in J} S_j$


It remains to be demonstrated that $\ds \bigcup_{i \mathop \in I} S_i = \bigcup_{j \mathop \in J} S_j \cup \bigcup_{k \mathop \in \relcomp I J} S_k$.

So:

\(\ds x\) \(\in\) \(\ds \bigcup_{i \mathop \in I} S_i\)
\(\ds \leadstoandfrom \ \ \) \(\ds \exists i \in I: x\) \(\in\) \(\ds S_i\) Definition of Union of Family
\(\ds \leadstoandfrom \ \ \) \(\ds \exists j \in J: x\) \(\in\) \(\ds S_j\) Definition of Relative Complement
\(\, \ds \lor \, \) \(\ds \exists k \in \relcomp I J: x\) \(\in\) \(\ds S_k\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds \bigcup_{j \mathop \in J} S_j\) Definition of Union of Family
\(\, \ds \lor \, \) \(\ds x\) \(\in\) \(\ds \bigcup_{k \mathop \in \relcomp I J} S_k\) Definition of Union of Family
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds \bigcup_{j \mathop \in J} S_j \cup \bigcup_{k \mathop \in \relcomp I J} S_k\) Definition of Set Union

That is:

$\ds x \in \bigcup_{i \mathop \in I} S_i \iff x \in \bigcup_{j \mathop \in J} S_j \cup \bigcup_{k \mathop \in \relcomp I J} S_k$

The result follows by definition of set equality.

$\blacksquare$


Also see


Sources