Union of Interiors is Subset of Interior of Union

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T$ be a topological space.


Let $\H$ be a set of subsets of $T$.

That is, let $\H \subseteq \powerset T$ where $\powerset T$ is the power set of $T$.


Then the union of the interiors of the elements of $\H$ is a subset of the interior of the union of $\H$:

$\ds \bigcup_{H \mathop \in \H} H^\circ \subseteq \paren {\bigcup_{H \mathop \in \H} H}^\circ $


Proof 1

In the following, $H^-$ denotes the closure of the set $H$.

\(\ds \paren {\bigcup_{H \mathop \in \mathbb H} H}^\circ\) \(=\) \(\ds T \setminus \paren {T \setminus \bigcup_{H \mathop \in \mathbb H} H}^-\) Complement of Interior equals Closure of Complement
\(\ds \) \(=\) \(\ds T \setminus \paren {\paren {\bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H} }^-}\) De Morgan's Laws: Difference with Union


At this point we note that:

$(1): \quad \ds \paren {\bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H} }^- \subseteq \bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H}^-$

from Closure of Intersection is Subset of Intersection of Closures.


Then we note that:

$\ds T \setminus \paren {\bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H}^-} \subseteq T \setminus \paren {\paren {\bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H} }^-} $

from $(1)$ and Set Complement inverts Subsets.


Then we continue:

\(\ds T \setminus \paren {\bigcap_{H \mathop \in \mathbb H} \paren {T \setminus H}^-}\) \(=\) \(\ds T \setminus \paren {\bigcap_{H \mathop \in \mathbb H} T \setminus H^\circ}\) Complement of Interior equals Closure of Complement
\(\ds \) \(=\) \(\ds T \setminus \paren {T \setminus \paren {\bigcup_{H \mathop \in \mathbb H} H^\circ} }\) De Morgan's Laws: Difference with Union
\(\ds \) \(=\) \(\ds \bigcup_{H \mathop \in \mathbb H} H^\circ\) Relative Complement of Relative Complement

$\blacksquare$


Proof 2

Let $\mathbb U$ be the set of all open subsets of $\bigcup \H$.

Then by definition of interior:

$\ds \paren {\bigcup_{H \mathop \in \H} H}^\circ = \paren {\bigcup \H}^\circ = \bigcup \mathbb U$


As $\mathbb U$ contains all open subsets of $\bigcup \H$, and $H^\circ$ is open for any $H \in \H$:

$\ds \set {H^\circ : H \in \H} \subseteq \mathbb U$

Thus:

$\ds \bigcup_{H \mathop \in \H} H^\circ = \bigcup \set {H^\circ : H \in \H} \subseteq \bigcup \mathbb U$

$\blacksquare$


Also see