Union of Set of Ordinals is Ordinal/Corollary/Proof 2

From ProofWiki
Jump to navigation Jump to search

Corollary to Union of Set of Ordinals is Ordinal

Let $y$ be a set.

Let $\On$ be the class of all ordinals.

Let $F: y \to \On$ be a mapping.


Then:

$\bigcup \map F y \in \On$

where $\map F y$ is the image of $y$ under $F$.


Proof

\(\ds x\) \(\in\) \(\ds \bigcup_{z \mathop \in y} \map F z\)
\(\ds \leadsto \ \ \) \(\ds \exists z \in y: \, \) \(\ds x\) \(\in\) \(\ds \map F z\) Definition of Set Union
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds \On\) by hypothesis

So:

$\ds \bigcup_{z \mathop \in y} \map F z \subseteq \On$


\(\ds x\) \(\in\) \(\ds \bigcup_{z \mathop \in y} \map F z\)
\(\ds \leadsto \ \ \) \(\ds \exists z \in y: \, \) \(\ds x\) \(\in\) \(\ds \map F z\) Definition of Set Union
\(\ds \leadsto \ \ \) \(\ds \exists z \in y: \, \) \(\ds x\) \(\subseteq\) \(\ds \map F z\) Ordinal is Transitive
\(\ds \leadsto \ \ \) \(\ds x\) \(\subseteq\) \(\ds \bigcup_{z \mathop \in y} \map F z\) Union Preserved Under Subset Relation

So $\ds \bigcup_{z \mathop \in y} \map F z$ is a transitive set.

Therefore $\ds \bigcup_{z \mathop \in y} \map F z$ is an ordinal.


$\ds \bigcup_{z \mathop \in y} \map F z = \bigcup \Img y$

Let $U$ denote the universal class.

\(\ds y\) \(\in\) \(\ds V\)
\(\ds \leadsto \ \ \) \(\ds \bigcup \Img y\) \(\in\) \(\ds V\) Axiom of Replacement Equivalents
\(\ds \leadsto \ \ \) \(\ds \bigcup \bigcup \Img y\) \(\in\) \(\ds V\) Axiom of Unions Equivalents
\(\ds \leadsto \ \ \) \(\ds \bigcup_{z \mathop \in y} \map F z\) \(\in\) \(\ds V\) Equality given above

Therefore $\ds \bigcup_{z \mathop \in y} \map F z$ is a set, so it is a member of the class of all ordinals.

$\blacksquare$