Union of Successor Ordinal

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be an ordinal.

Let $x^+$ denote the successor of $x$.

Then:

$\map \bigcup {x^+} = x$


Proof

\(\ds \map \bigcup {x^+}\) \(=\) \(\ds \map \bigcup {x \cup \set x}\) Definition of Successor Set
\(\ds \) \(=\) \(\ds \paren {\bigcup x \cup \bigcup \set x}\) Set Union is Self-Distributive/Sets of Sets
\(\ds \) \(=\) \(\ds \paren {\bigcup x \cup x}\) Union of Singleton
\(\ds \) \(=\) \(\ds x\) Class is Transitive iff Union is Subclass

$\blacksquare$