Unit Matrix is Unity of Ring of Square Matrices

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R$ be a ring with unity whose zero is $0_R$ and whose unity is $1_R$.

Let $n \in \Z_{>0}$ be a (strictly) positive integer.

Let $\struct {\map {\MM_R} n, +, \times}$ denote the ring of square matrices of order $n$ over $R$.


The unit matrix over $R$:

$\mathbf I_n = \begin {pmatrix} 1_R & 0_R & 0_R & \cdots & 0_R \\ 0_R & 1_R & 0_R & \cdots & 0_R \\ 0_R & 0_R & 1_R & \cdots & 0_R \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0_R & 0_R & 0_R & \cdots & 1_R \end {pmatrix}$

is the identity element of $\struct {\map {\MM_R} n, +, \times}$.


Proof

In Unit Matrix is Identity for Matrix Multiplication, it is demonstrated that:

$\forall \mathbf A \in \map {\MM_R} n: \mathbf A \mathbf I_n = \mathbf A = \mathbf I_n \mathbf A$

Hence the result, by definition of identity element

$\blacksquare$


Sources