Universal Affirmative and Negative are both False iff Particular Affirmative and Negative are both True

From ProofWiki
Jump to navigation Jump to search

Theorem

Consider the categorical statements:

The universal affirmative:      \(\ds \map {\mathbf A} {S, P}:\)    \(\ds \forall x: \map S x \)   \(\ds \implies \)   \(\ds \map P x \)      
The universal negative:      \(\ds \map {\mathbf E} {S, P}:\)    \(\ds \forall x: \map S x \)   \(\ds \implies \)   \(\ds \neg \map P x \)      
The particular affirmative:      \(\ds \map {\mathbf I} {S, P}:\)    \(\ds \exists x: \map S x \)   \(\ds \land \)   \(\ds \map P x \)      
The particular negative:      \(\ds \map {\mathbf O} {S, P}:\)    \(\ds \exists x: \map S x \)   \(\ds \land \)   \(\ds \neg \map P x \)      


Then:

$\map {\mathbf A} {S, P}$ and $\map {\mathbf E} {S, P}$ are both false

if and only if:

$\map {\mathbf I} {S, P}$ and $\map {\mathbf O} {S, P}$ are both true.


Proof

Necessary Condition

Let $\map {\mathbf A} {S, P}$ and $\map {\mathbf E} {S, P}$ both be false.

\(\text {(1)}: \quad\) \(\ds \neg \map {\mathbf A} {S, P}\) \(\land\) \(\ds \neg \map {\mathbf E} {S, P}\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \neg \map {\mathbf A} {S, P}\) \(\) \(\ds \) Rule of Simplification: from $(1)$
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map {\mathbf O} {S, P}\) \(\) \(\ds \) Universal Affirmative and Particular Negative are Contradictory: from $(2)$
\(\text {(4)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \neg \map {\mathbf E} {S, P}\) \(\) \(\ds \) Rule of Simplification: from $(1)$
\(\text {(5)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map {\mathbf I} {S, P}\) \(\) \(\ds \) Particular Affirmative and Universal Negative are Contradictory: from $(4)$
\(\text {(6)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map {\mathbf I} {S, P}\) \(\land\) \(\ds \map {\mathbf O} {S, P}\) Rule of Conjunction: from $(5)$ and $(3)$

Hence $\map {\mathbf I} {S, P}$ and $\map {\mathbf O} {S, P}$ are both true.

$\Box$


Sufficient Condition

Let $\map {\mathbf I} {S, P}$ and $\map {\mathbf O} {S, P}$ both be true.

\(\text {(1)}: \quad\) \(\ds \map {\mathbf I} {S, P}\) \(\land\) \(\ds \map {\mathbf O} {S, P}\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map {\mathbf I} {S, P}\) \(\) \(\ds \) Rule of Simplification: from $(1)$
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \neg \map {\mathbf E} {S, P}\) \(\) \(\ds \) Particular Affirmative and Universal Negative are Contradictory: from $(2)$
\(\text {(4)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map {\mathbf O} {S, P}\) \(\) \(\ds \) Rule of Simplification: from $(1)$
\(\text {(5)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \neg \map {\mathbf A} {S, P}\) \(\) \(\ds \) Universal Affirmative and Particular Negative are Contradictory: from $(4)$
\(\text {(6)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \neg \map {\mathbf A} {S, P}\) \(\land\) \(\ds \neg \map {\mathbf E} {S, P}\) Rule of Conjunction: from $(5)$ and $(3)$

Hence $\map {\mathbf A} {S, P}$ and $\map {\mathbf E} {S, P}$ are both false.

$\blacksquare$


Sources