Vanishing Ideal of Larger Subset of Affine Space is Smaller

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $k$ be a field.

Let $n \ge 1$ be a natural number.

Let $\mathbb A^n_k$ be the standard affine space over $k$.

Let $S \subseteq T \subseteq \mathbb A^n_k$.


Then:

$\map I S \supseteq \map I T$

where $\map I S$ and $\map I T$ denote the vanishing ideals of $S$ and $T$, respectively.


Proof

\(\ds f\) \(\in\) \(\ds \map I T\)
\(\ds \leadsto \ \ \) \(\ds \forall x \in T: \, \) \(\ds \map f x\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds \map f x\) \(=\) \(\ds 0\) since $S \subseteq T$ by assumption
\(\ds \leadsto \ \ \) \(\ds f\) \(\in\) \(\ds \map I S\)

$\blacksquare$