# Variance as Expectation of Square minus Square of Expectation/Continuous

## Theorem

Let $X$ be a continuous random variable.

Then the variance of $X$ can be expressed as:

$\var X = \expect {X^2} - \paren {\expect X}^2$

That is, it is the expectation of the square of $X$ minus the square of the expectation of $X$.

## Proof

Let $\mu = \expect X$.

Let $X$ have probability density function $f_X$.

As $f_X$ is a probability density function:

$\ds \int_{-\infty}^\infty \map {f_X} x \rd x = \Pr \paren {-\infty < X < \infty} = 1$

Then:

 $\ds \var X$ $=$ $\ds \expect {\paren {X - \mu}^2}$ Definition of Variance of Continuous Random Variable $\ds$ $=$ $\ds \int_{-\infty}^\infty \paren {X - \mu}^2 \map {f_X} x \rd x$ Definition of Expectation of Continuous Random Variable $\ds$ $=$ $\ds \int_{-\infty}^\infty \paren {x^2 - 2 \mu x + \mu^2} \map {f_X} x \rd x$ $\ds$ $=$ $\ds \int_{-\infty}^\infty x^2 \map {f_X} x \rd x - 2 \mu \int_{-\infty}^\infty x f_X \paren x \rd x + \mu^2 \int_{-\infty}^\infty \map {f_X} x \rd x$ $\ds$ $=$ $\ds \expect {X^2} - 2 \mu^2 + \mu^2$ Definition of Expectation of Continuous Random Variable $\ds$ $=$ $\ds \expect {X^2} - \mu^2$ $\ds$ $=$ $\ds \expect {X^2} - \paren {\expect X}^2$

$\blacksquare$