Vaughan's Identity
Jump to navigation
Jump to search
Theorem
Let $\Lambda$ be von Mangoldt's function.
Let $\mu$ be the Möbius function.
Then for $y, z \ge 1$ and $n > z$:
- $\ds \map \Lambda n = \sum_{\substack {d \mathop \divides n \\ d \mathop \le y}} \map \mu d \map \ln {\frac n d} - \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ d \mathop \le y, \, c \mathop \le z}} \map \mu d \map \Lambda c + \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ d \mathop > y, \, c \mathop > z} } \map \mu d \map \Lambda c$
where $\divides$ denotes divisibility.
Proof
By Sum Over Divisors of von Mangoldt is Logarithm:
- $\ds \ln n = \sum_{d \mathop \divides n} \map \Lambda d$
Hence:
\(\ds \map \Lambda n\) | \(=\) | \(\ds \sum_{d \mathop \divides n} \map \mu d \map \ln {\frac n d}\) | Möbius Inversion Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{\substack {d \mathop \divides n \\ d \mathop \le y} } \map \mu d \map \ln {\frac n d} + \sum_{\substack {d \mathop \divides n \\ d \mathop > y} } \map \mu d \map \ln {\frac n d}\) |
Taking the second summation in that last line:
\(\ds \sum_{\substack {d \mathop \divides n \\ d \mathop > y} } \map \mu d \map \ln {\frac n d}\) | \(=\) | \(\ds \sum_{\substack {d \mathop \divides n \\ d \mathop > y} } \map \mu d \sum_{c \mathop \divides n / d} \map \Lambda c\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ d \mathop > y} } \map \mu d \map \Lambda c\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ d \mathop > y, \, c \mathop > z} } \map \mu d \map \Lambda c + \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ d \mathop > y, \, c \mathop \le z} } \map \mu d \, \map \Lambda c\) |
Again, taking the second summation in that last line:
- $\ds \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ d \mathop > y, \, c \mathop \le z} } \map \mu d \map \Lambda c = \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ c \mathop \le z} } \map \mu d \map \Lambda c - \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ d \mathop \le y, \, c \mathop \le z} } \map \mu d \map \Lambda c$
Putting this together:
- $\ds \map \Lambda n = \sum_{\substack {d \mathop \divides n \\ d \mathop \le y} } \map \mu d \map \ln {\frac n d} + \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ d \mathop > y, c \mathop > z} } \map \mu d \map \Lambda c + \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ c \mathop \le z} } \map \mu d \map \Lambda c - \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ d \mathop \le y, c \mathop \le z} } \map \mu d \map \Lambda c$
It remains to be shown that:
- $\ds \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ c \mathop \le z} } \map \mu d \map \Lambda c = 0$
The summation is expressed as:
- $\ds \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ c \mathop \le z} } \map \mu d \map \Lambda c = \sum_{\substack {c \mathop \le z \\ c \mathop \divides n} } \map \Lambda c \sum_{d \mathop \divides \frac n c} \map \mu d$
Now we have $c \le z < n$, so:
- $\dfrac n c > 1$
Therefore, by the lemma to Sum of Möbius Function over Divisors:
- for each $c$ the inner sum vanishes.
This shows that:
- $\ds \mathop {\sum \sum}_{\substack {d c \mathop \divides n \\ c \mathop \le z} } \map \mu d \map \Lambda c = 0$
as required.
$\blacksquare$
Source of Name
This entry was named for Robert Charles Vaughan.