Vector Cross Product is not Associative
Jump to navigation
Jump to search
Theorem
The vector cross product is not associative.
That is, in general:
- $\mathbf a \times \paren {\mathbf b \times \mathbf c} \ne \paren {\mathbf a \times \mathbf b} \times \mathbf c$
for $\mathbf a, \mathbf b, \mathbf c \in \R^3$.
Proof
Let $\mathbf a = \begin {bmatrix} 1 \\ 0 \\ 0 \end {bmatrix}$, $\mathbf b = \begin {bmatrix} 1 \\ 1 \\ 0 \end {bmatrix}$, $\mathbf c = \begin {bmatrix} 1 \\ 1 \\ 1 \end {bmatrix}$
\(\ds \mathbf a \times \paren {\mathbf b \times \mathbf c}\) | \(=\) | \(\ds \mathbf a \times \paren {\begin {bmatrix} 1 \\ 1 \\ 0 \end {bmatrix} \times \begin {bmatrix} 1 \\ 1 \\ 1 \end {bmatrix} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf a \times \begin {bmatrix} 1 \\ -1 \\ 0 \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} 1 \\ 0 \\ 0 \end {bmatrix} \times \begin {bmatrix} 1 \\ -1 \\ 0 \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} 0 \\ 0 \\ -1 \end {bmatrix}\) | ||||||||||||
\(\ds \paren {\mathbf a \times \mathbf b} \times \mathbf c\) | \(=\) | \(\ds \paren {\begin {bmatrix} 1 \\ 0 \\ 0 \end {bmatrix} \times \begin {bmatrix} 1 \\ 1 \\ 0 \end {bmatrix} } \times \mathbf c\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} 0 \\ 0 \\ 1 \end {bmatrix} \times \mathbf c\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} 0 \\ 0 \\ 1 \end {bmatrix} \times \begin {bmatrix} 1 \\ 1 \\ 1 \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} -1 \\ 1 \\ 0 \end {bmatrix}\) |
$\blacksquare$
Sources
- 1951: B. Hague: An Introduction to Vector Analysis (5th ed.) ... (previous) ... (next): Chapter $\text {II}$: The Products of Vectors: $7$. Products of Three Vectors
- 1957: D.E. Rutherford: Vector Methods (9th ed.) ... (previous) ... (next): Chapter $\text I$: Vector Algebra: $\S 5$