Vector Inverse is Negative Vector

From ProofWiki
Jump to navigation Jump to search


Let $F$ be a field whose zero is $0_F$ and whose unity is $1_F$.

Let $\struct {\mathbf V, +, \circ}_F$ be a vector space over $F$, as defined by the vector space axioms.


$\forall \mathbf v \in \mathbf V: -\mathbf v = -1_F \circ \mathbf v$


\(\ds \mathbf v + \paren {-1_F \circ \mathbf v}\) \(=\) \(\ds \paren {1_F \circ \mathbf v} + \paren {-1_F \circ \mathbf v}\) Field Axiom $\text M3$: Identity for Product
\(\ds \) \(=\) \(\ds \paren {1_F + \paren {- 1_F} } \circ \mathbf v\) Vector Space Axiom $\text V 5$: Distributivity over Scalar Addition
\(\ds \) \(=\) \(\ds 0_F \circ \mathbf v\) Field Axiom $\text A4$: Inverses for Addition
\(\ds \) \(=\) \(\ds \mathbf 0\) Vector Scaled by Zero is Zero Vector

so $-1_F \circ \mathbf v$ is an additive inverse of $\mathbf v$.

From Additive Inverse in Vector Space is Unique:

$-1_F \circ \mathbf v = -\mathbf v$