Vectors are Left Cancellable

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\mathbf V, +, \circ}$ be a vector space over $\GF$, as defined by the vector space axioms.

Then every $\mathbf v \in \struct {\mathbf V, +}$ is left cancellable:

$\forall \mathbf a, \mathbf b, \mathbf c \in \mathbf V: \mathbf c + \mathbf a = \mathbf c + \mathbf b \implies \mathbf a = \mathbf b$


Proof

Utilizing the vector space axioms:

\(\ds \mathbf c + \mathbf a\) \(=\) \(\ds \mathbf c + \mathbf b\)
\(\ds \leadsto \ \ \) \(\ds \mathbf a + \mathbf c\) \(=\) \(\ds \mathbf b + \mathbf c\)
\(\ds \leadsto \ \ \) \(\ds \mathbf a\) \(=\) \(\ds \mathbf b\) Vectors are Right Cancellable

$\blacksquare$