Wilson's Theorem/Examples/10 does not divide (n-1)!+1

From ProofWiki
Jump to navigation Jump to search

Example of Use of Wilson's Theorem

For all $n \in \Z_{>0}$, $10$ is not a divisor of $\paren {n - 1}! + 1$.


Proof

For the first few $n$ we see:

\(\, \ds 10 \nmid \, \) \(\ds 2\) \(=\) \(\ds \paren {1 - 1}! + 1\) where $\nmid$ denotes non-divisibility
\(\ds \) \(=\) \(\ds \paren {2 - 1}! + 1\)
\(\, \ds 10 \nmid \, \) \(\ds 3\) \(=\) \(\ds \paren {3 - 1}! + 1\)
\(\, \ds 10 \nmid \, \) \(\ds 7\) \(=\) \(\ds \paren {4 - 1}! + 1\)
\(\, \ds 10 \nmid \, \) \(\ds 25\) \(=\) \(\ds \paren {5 - 1}! + 1\)


Now consider $n > 5$.

We have that:

\(\ds 2\) \(\divides\) \(\ds \paren {n - 1}!\) where $\divides$ denotes divisibility
\(\ds 5\) \(\divides\) \(\ds \paren {n - 1}!\)
\(\ds \leadsto \ \ \) \(\ds 10\) \(\divides\) \(\ds \paren {n - 1}!\) as $10 = \lcm \set {2, 5}$

Hence $10 \nmid \paren {n - 1}! + 1$.

$\blacksquare$


Sources