Zero Element is Unique

From ProofWiki
Jump to navigation Jump to search


Let $\struct {S, \circ}$ be an algebraic structure that has a zero element $z \in S$.

Then $z$ is unique.


Suppose $z_1$ and $z_2$ are both zeroes of $\struct {S, \circ}$.

Then by the definition of zero element:

$z_2 \circ z_1 = z_1$ by dint of $z_1$ being a zero
$z_2 \circ z_1 = z_2$ by dint of $z_2$ being a zero.

So $z_1 = z_2 \circ z_1 = z_2$.

So $z_1 = z_2$ and there is only one zero after all.