Abel-Plana Formula

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map f z$ be analytic for real part of $\map \Re z \ge 0$.

Suppose that either $\ds \sum_{n \mathop = 0}^\infty \map f n$ converges or $\ds \int_0^\infty \map f x \rd x$ converges.

Assume further that:

$\ds \lim_{y \mathop \to \infty} \size {\map f {x \pm i y} } e^{-2 \pi y} = 0$ uniformly in $x$ on every finite interval
$\ds \int_0^{\infty} \size {\map f {x \pm i y} } e^{-2 \pi y} \rd y$ exists for every $x \ge 0$ and tends to $0$ as $x \to \infty$.


Then:

$\ds \sum_{n \mathop = 0}^\infty \map f n = \int_0^\infty \map f x \rd x + \dfrac 1 2 \map f 0 + i \int_0^\infty \dfrac {\map f {i t} - \map f {-i t} } {e^{2 \pi t} - 1} \rd t$


Proof




Source of Name

This entry was named for Niels Henrik Abel and Giovanni Antonio Amedeo Plana.


Sources