Archimedes' Limits to Value of Pi/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma for Archimedes' Limits to Value of Pi

$\ds \cot \dfrac \phi 2 = \cot \phi + \csc \phi$


Proof

\(\ds \tan \dfrac \phi 2\) \(=\) \(\ds \paren {\csc \phi - \cot \phi}\) Half Angle Formula for Tangent: Corollary $3$
\(\ds \leadsto \ \ \) \(\ds \cot \dfrac \phi 2\) \(=\) \(\ds \dfrac 1 {\paren {\csc \phi - \cot \phi} }\) Tangent is Reciprocal of Cotangent
\(\ds \) \(=\) \(\ds \dfrac {\csc \phi + \cot \phi} {\paren {\csc \phi - \cot \phi} \paren {\csc \phi + \cot \phi} }\) multiplying top and bottom by $\csc \phi + \cot \phi$
\(\ds \) \(=\) \(\ds \dfrac {\csc \phi + \cot \phi} {\paren {\csc^2 \phi - \cot^2 \phi} }\) Difference of Two Squares
\(\ds \cot \dfrac \phi 2\) \(=\) \(\ds \cot \phi + \csc \phi\) Difference of Squares of Cosecant and Cotangent

$\Box$