Argument of Exponential is Imaginary Part plus Multiple of 2 Pi

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number.

Let $\exp z$ denote the complex exponential of $z$.

Let $\arg z$ denote the argument of $z$.


Then:

$\map \arg {\exp z} = \set {\Im z + 2 k \pi: k \in \Z}$

where $\Im z$ denotes the imaginary part of $z$.


Proof

Let $z = x + i y$.

Let $\theta \in \map \arg {\exp z}$.

We have:

\(\ds \exp z\) \(=\) \(\ds e^x \paren {\cos y + i \sin y}\) Definition of Exponential Function
\(\ds \leadsto \ \ \) \(\ds y\) \(\in\) \(\ds \map \arg {\exp z}\) Definition of Polar Form of Complex Number
\(\ds \leadsto \ \ \) \(\ds \map \arg {\exp z}\) \(=\) \(\ds \set {y + 2 k \pi: k \in \Z}\) Definition of Argument of Complex Number
\(\ds \) \(=\) \(\ds \set {\Im z + 2 k \pi: k \in \Z}\) Definition of Imaginary Part

$\blacksquare$


Sources