Axiom:Additive Semiring Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

An additive semiring is an algebraic structure $\struct {R, *, \circ}$, on which are defined two binary operations $\circ$ and $*$, which satisfy the following conditions:

\((\text A 0)\)   $:$     \(\ds \forall a, b \in S:\) \(\ds a * b \in S \)      Closure under $*$
\((\text A 1)\)   $:$     \(\ds \forall a, b, c \in S:\) \(\ds \paren {a * b} * c = a * \paren {b * c} \)      Associativity of $*$
\((\text A 2)\)   $:$     \(\ds \forall a, b \in S:\) \(\ds a * b = b * a \)      Commutativity of $*$
\((\text M 0)\)   $:$     \(\ds \forall a, b \in S:\) \(\ds a \circ b \in S \)      Closure under $\circ$
\((\text M 1)\)   $:$     \(\ds \forall a, b, c \in S:\) \(\ds \paren {a \circ b} \circ c = a \circ \paren {b \circ c} \)      Associativity of $\circ$
\((\text D)\)   $:$     \(\ds \forall a, b, c \in S:\) \(\ds a \circ \paren {b * c} = \paren {a \circ b} * \paren {a \circ c} \)      $\circ$ is distributive over $*$
\(\ds \paren {a * b} \circ c = \paren {a \circ c} * \paren {a \circ c} \)      

These criteria are called the additive semiring axioms.


Also see