Axiom:Content Axioms

From ProofWiki
Jump to navigation Jump to search


Let $X$ be a set.

Let $C \subset \powerset X$ be a set of subsets of $X$.

Let $\lambda : C \to \R_{\mathop \ge 0}$ be a function from $C$ to the non-negative real numbers.

Then $\lambda$ is a content on $C$ if and only if, for any $A, B \in C$:

\((1)\)   $:$   Monotone      \(\ds \forall A, B \in C:\) \(\ds A \subseteq B \implies \map \lambda A \le \map \lambda B \)      
\((2)\)   $:$   Additive      \(\ds \forall A, B \in C:\) \(\ds A \cap B = \O \implies \map \lambda {A \cup B} = \map \lambda A + \map \lambda B \)      
\((3)\)   $:$   Subadditive      \(\ds \forall A, B \in C:\) \(\ds \map \lambda {A \cup B} \le \map \lambda A + \map \lambda B \)