Basic Primitive Recursive Functions are Arithmetically Definable

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f: \N^k \to \N$ be a basic primitive recursive function.

Then there is a WFF $\map \phi {y, x_1, \dotsc, x_k}$ of $k + 1$ free variables and no quantifiers such that:

$y = \map f {x_1, \dotsc, x_k}$

if and only if

$\N \models \map \phi {y \gets \sqbrk y, x_1 \gets \sqbrk {x_1}, \dotsc, x_k \gets \sqbrk {x_k} }$

where $\sqbrk a$ denotes the unary representation of $a \in \N$.


Proof

Zero Function

Suppose $\map f x = 0$.

Then:

$\map \phi {y, x} := y = 0$

Correctness is apparent.

$\Box$


Successor Function

Suppose $\map f x = \map s x$.

Then:

$\map \phi {y, x} := y = \map s x$

Correctness is apparent.

$\Box$


Projection Function

Let $j, k \in \N$.

Suppose $\map f {x_1, \dotsc, x_k} = x_j$.

Then:

$\map \phi {y, x_1, \dotsc, x_k} := y = x_j$

Correctness is apparent.

$\blacksquare$