Binomial Coefficient of Prime/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be a prime number.


Then:

$\forall k \in \Z: 0 < k < p: \dbinom p k \equiv 0 \pmod p$

where $\dbinom p k$ is defined as a binomial coefficient.


Proof

Because:

$\dbinom p k = \dfrac {p \paren {p - 1} \paren {p - 2} \cdots \paren {p - k + 1} } {k!}$

is an integer, we have that:

$k! \divides p \paren {p - 1} \paren {p - 2} \cdots \paren {p - k + 1}$


But because $k < p$ it follows that:

$k! \mathrel \perp p$

that is, that:

$\gcd \set {k!, p} = 1$


So by Euclid's Lemma:

$k! \divides \paren {p - 1} \paren {p - 2} \cdots \paren {p - k + 1}$

Hence:

$\dbinom p k = p \dfrac {\paren {p - 1} \paren {p - 2} \cdots \paren {p - k + 1} } {k!}$

Hence the result.

$\blacksquare$