Bounds for Prime-Counting Function in terms of Second Chebyshev Function

From ProofWiki
Jump to navigation Jump to search

Theorem

There exists a real function $R : \hointr 2 \infty \to \R$ such that:

$\ds \frac {\map \psi x} {\ln x} + \map R x \le \map \pi x \le \frac {2 \map \psi x} {\ln x} + \sqrt x$

for all real numbers $x \ge 2$, where:

$\pi$ is the prime counting function
$\psi$ is the second Chebyshev function
$R = \map \OO {\sqrt x \ln x}$ where $\OO$ is big-$\OO$ notation.


Proof

We have, from the definition of the prime counting function:

$\ds \map \pi x = \sum_{p \le x} 1$

We can write:

$\ds \sum_{p \le x} 1 = \sum_{p \le \sqrt x} 1 + \sum_{\sqrt x < p \le x} 1$

We have that:

\(\ds \sum_{p \le \sqrt x} 1\) \(\le\) \(\ds \sum_{n \le \sqrt x} 1\)
\(\ds \) \(=\) \(\ds \floor {\sqrt x}\)
\(\ds \) \(\le\) \(\ds \sqrt x\) Definition of Floor Function

For $1 < \sqrt x < p$, we have from Logarithm is Strictly Increasing:

$0 < \map \ln {\sqrt x} < \ln p$

So:

$\ds \frac {\ln p} {\map \ln {\sqrt x} } > 1$

Then:

\(\ds \sum_{\sqrt x < p \le x} 1\) \(<\) \(\ds \sum_{\sqrt x < p \le x} \frac {\ln p} {\map \ln {\sqrt x} }\)
\(\ds \) \(=\) \(\ds \frac 2 {\ln x} \sum_{\sqrt x < p \le x} \ln p\) Logarithm of Power
\(\ds \) \(\le\) \(\ds \frac 2 {\ln x} \sum_{p \le x} \ln p\)
\(\ds \) \(\le\) \(\ds \frac 2 {\ln x} \sum_{k \mathop = 1}^\infty \paren {\sum_{p^k \le x} \ln p}\) since $\ln p \ge \ln 2 > 0$ from Logarithm is Strictly Increasing
\(\ds \) \(=\) \(\ds \frac 2 {\ln x} \map \psi x\) Definition of Second Chebyshev Function

So:

$\ds \map \psi x \le \sqrt x + \frac 2 {\ln x} \map \psi x$

Now, from Order of Second Chebyshev Function, there exists a real function $r : \hointr 2 \infty \to \R$ such that:

$\ds \map \psi x = \sum_{p \le x} \ln p + \map r x$

where:

$r = \map \OO {\sqrt x \paren {\ln x}^2}$

For $p \le x$, we have from Logarithm is Strictly Increasing:

$0 < \ln p \le \ln x$

so:

$\ds \frac {\ln p} {\ln x} < 1$

Then:

\(\ds \sum_{p \le x} 1\) \(>\) \(\ds \sum_{p \le x} \frac {\ln p} {\ln x}\)
\(\ds \) \(=\) \(\ds \frac 1 {\ln x} \sum_{p \le x} \ln p\)
\(\ds \) \(=\) \(\ds \frac {\map \psi x} {\ln x} + \frac {\map r x} {\ln x}\)

From Product of Big-O Estimates, we have:

$\dfrac {\map r x} {\ln x} = \map \OO {\sqrt x \ln x}$

So if we take:

$\map R x = \dfrac {\map r x} {\ln x}$

for each $x \ge 2$, we have:

$\ds \map \pi x = \sum_{p \le x} 1 \ge \frac {\map \psi x} {\ln x} + \map R x$

with $R = \map \OO {\sqrt x \ln x}$.


So we obtain:

$\ds \frac {\map \psi x} {\ln x} + \map R x \le \map \pi x \le \frac {2 \map \psi x} {\ln x} + \sqrt x$

with $R = \map \OO {\sqrt x \ln x}$ as required.

$\blacksquare$