Cantor-Bernstein-Schröder Theorem/Lemma/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $T \subseteq S$.

Suppose that $f: S \to T$ is an injection.


Then there is a bijection $g: S \to T$.


Proof

Recursively define a sequence $\langle C_n \rangle$ in the power set of $S$ as follows:

$C_0 = S \setminus T$, the difference between $S$ and $T$.
$C_{n + 1} = f \sqbrk {C_n}$, the image of $C_n$ under $f$.

Let $\ds C := \bigcup_{n \mathop \in \N} C_n$.

Define a mapping $h: S \to T$ as follows:

$\map h x = \begin {cases} \map f x & : x \in C \\ x & : x \notin C \end {cases}$


$h$ is a mapping from $S$ to $T$

By Law of Excluded Middle, for each $x \in S$:

$x \in C$

or:

$x \notin C$

Thus the construction produces a mapping on S.

It remains to be shown that:

$\forall x \in S: \map h x \in T$


Let $x \in C$.

Then:

$\map h x = \map f x \in T$


Let $x \notin C$.

Then by Set is Subset of Union of Family:

$x \notin C_0$

As $x \in S$:

$x \in S \setminus C_0$

by the definition of set difference.

By Relative Complement of Relative Complement:

$S \setminus C_0 = T$

Thus $x \in T$ by the definition of subset.

As $\map h x = x$ in this case:

$\map h x \in T$

$\Box$


$h$ is injective

Let $x, y \in S$.

Suppose that $\map h x = \map h y$.

By Law of Excluded Middle for Two Variables:

$\paren {x \in C} \land \paren {y \in C}$

or:

$\paren {x \notin C} \land \paren {y \notin C}$

or:

$\paren {x \in C} \land \paren {y \notin C}$

or:

$\paren {x \notin C} \paren {y \in C}$


Let $x, y \in C$.

Then $x = y$ because $f$ is injective.


Let $x, y \notin C$.

Then $x = y$ by Identity Mapping is Injection.


Let $x \in C$ and $y \notin C$.

Then $x \in C_n$ for some $n$ by the definition of union.


By Set is Subset of Union of Family:

$\map h x = \map f x \in C_{n + 1} \subseteq C$

Thus $\map h x \in C$.

$\map h y = y$ by the definition of $h$.

Since $y \notin C$, this contradicts the assumption that $\map h x = \map h y$.


The argument for the case of $x \notin C$ and $y \in C$ is identical to the preceding.


Thus $\map h x = \map h y \implies x = y$ for all $x, y \in S$, so $h$ is injective.

$\Box$


$h$ is surjective

Let $y \in T$.

By Law of Excluded Middle:

$y \in C$

or:

$y \notin C$


Let $y \notin C$.

Then:

$\map h y = y$


Let $y \in C$.

Then as $y \notin C_0 = S \setminus T$:

$\exists n \in \N_{>0}: y \in C_{n + 1}$

Thus:

$\exists x \in C_n: y = \map f x$

By the definition of union:

$x \in C$

Thus:

$\map h x = \map f x = y$

Thus:

$\forall y \in T: \exists x \in S: \map h x = y$

Thus by definition, $h$ is surjective.

$\blacksquare$


Sources

This article incorporates material from proof of Schroeder-Bernstein theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.