Cantor-Bernstein-Schröder Theorem/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets, such that:

$\exists f: S \to T$ such that $f$ is an injection
$\exists g: T \to S$ such that $g$ is an injection.

Then there exists a bijection from $S$ to $T$.


Proof

Let $S, T$ be sets.

Let $\powerset S, \powerset T$ denote their power sets.

Let $f: S \to T$ and $g: T \to S$ be injections that we know to exist between $S$ and $T$.


Consider the relative complements of elements of $\powerset S$ and $\powerset T$ as mappings:

$\complement_S: \powerset S \to \powerset S: \forall X \in \powerset S: \relcomp S X = S \setminus X$
$\complement_T: \powerset T \to \powerset T: \forall Y \in \powerset T: \relcomp T Y = T \setminus Y$

which follow directly from the definition of relative complement.

Let $\alpha$ and $\beta$ denote the direct image mappings of $f$ and $g$, respectively.


Consider the mapping $z: \powerset S \to \powerset S$ defined by the composition:

$z = \complement_S \circ \beta \circ \complement_T \circ \alpha$


$z$ is an increasing mapping

Let $A, B \in \powerset S$ with $A \subseteq B$.

We have:

\(\ds \map \alpha A\) \(\subseteq\) \(\ds \map \alpha B\) Image of Subset under Mapping is Subset of Image
\(\ds \leadsto \ \ \) \(\ds \map {\paren {\complement_T \circ \alpha} } A\) \(\supseteq\) \(\ds \map {\paren {\complement_T \circ \alpha} } B\) Set Complement inverts Subsets
\(\ds \leadsto \ \ \) \(\ds \map {\paren {\beta \circ \complement_T \circ \alpha} } A\) \(\supseteq\) \(\ds \map {\paren {\beta \circ \complement_T \circ \alpha} } B\) Image of Subset under Mapping is Subset of Image
\(\ds \leadsto \ \ \) \(\ds \map {\paren {\complement_S \circ \beta \circ \complement_T \circ \alpha} } A\) \(\subseteq\) \(\ds \map {\paren {\complement_S \circ \beta \circ \complement_T \circ \alpha} } B\) Set Complement inverts Subsets
\(\ds \leadsto \ \ \) \(\ds \map z A\) \(\subseteq\) \(\ds \map z B\) Definition of $z$

$\Box$

By the Knaster-Tarski Lemma: Power Set, there is a $\mathbb G \in \powerset S$ such that:

$\map z {\mathbb G} = \mathbb G$


From Relative Complement of Relative Complement we have that $\complement_S \circ \complement_S$ is the identity mapping on $\powerset S$.

Thus we obtain:

\(\ds \relcomp S {\mathbb G}\) \(=\) \(\ds \map {\paren {\complement_S \circ z} } {\mathbb G}\)
\(\ds \) \(=\) \(\ds \map {\paren {\complement_S \circ \complement_S \circ \beta \circ \complement_T \circ \alpha} } {\mathbb G}\) Definition of $z$
\(\ds \) \(=\) \(\ds g \sqbrk {\map {\paren {\complement_T \circ \alpha} } {\mathbb G} }\) as $\complement_S \circ \complement_S = I_{\powerset S}$


At this stage, a diagram can be helpful:

Cantor-Bernstein-Schroeder.png


Let $h: S \to T$ be the mapping defined as:

$\forall x \in S: \map h x = \begin {cases}

\map f x & : x \in \mathbb G \\ \map {g^{-1} } x & : x \in \relcomp S {\mathbb G} \end {cases}$

From the above, we have that:

$\relcomp S {\mathbb G} \subseteq g \sqbrk T$

Therefore, as $g$ is an injection, it follows that the preimage $\map {g^{-1} } x$ is a singleton.

So $h$ is a bijection by dint of the injective nature of both $f$ and $g^{-1}$.

$\blacksquare$


Source of Name

This entry was named for Georg CantorFelix Bernstein and Friedrich Wilhelm Karl Ernst Schröder.


Sources