Category:Definitions/Suprema
Jump to navigation
Jump to search
This category contains definitions related to Suprema.
Related results can be found in Category:Suprema.
Let $\struct {S, \preccurlyeq}$ be an ordered set.
Let $T \subseteq S$.
An element $c \in S$ is the supremum of $T$ in $S$ if and only if:
- $(1): \quad c$ is an upper bound of $T$ in $S$
- $(2): \quad c \preccurlyeq d$ for all upper bounds $d$ of $T$ in $S$.
Pages in category "Definitions/Suprema"
The following 33 pages are in this category, out of 33 total.
I
M
- Definition:Mapping Preserves Directed Supremum
- Definition:Mapping Preserves Supremum
- Definition:Mapping Preserves Supremum of Subset
- Definition:Mapping Preserves Supremum/All
- Definition:Mapping Preserves Supremum/Directed
- Definition:Mapping Preserves Supremum/Finite
- Definition:Mapping Preserves Supremum/Join
- Definition:Mapping Preserves Supremum/Subset
P
S
- Definition:Supremum
- Definition:Supremum of Mapping/Real-Valued Function
- Definition:Supremum of Mapping/Real-Valued Function/Definition 1
- Definition:Supremum of Mapping/Real-Valued Function/Definition 2
- Definition:Supremum of Real Sequence
- Definition:Supremum of Real-Valued Function
- Definition:Supremum of Sequence
- Definition:Supremum of Set
- Definition:Supremum of Set/Finite Supremum
- Definition:Supremum of Set/Real Numbers
- Definition:Supremum of Set/Real Numbers/Propositional Function
- Definition:Supremum of Set/Real Numbers/Propositional Function/Finite Range
- Definition:Supremum of Set/Real Numbers/Propositional Function/Vacuous Supremum
- Definition:Supremum of Subset of Real Numbers
- Definition:Supremum/Also defined as
- Definition:Supremum/Also known as