Category:Definitions/Vector Cross Product
Jump to navigation
Jump to search
This category contains definitions related to Vector Cross Product.
Related results can be found in Category:Vector Cross Product.
Let $\mathbf a$ and $\mathbf b$ be vectors in a vector space $\mathbf V$ of $3$ dimensions:
- $\mathbf a = a_i \mathbf i + a_j \mathbf j + a_k \mathbf k$
- $\mathbf b = b_i \mathbf i + b_j \mathbf j + b_k \mathbf k$
where $\tuple {\mathbf i, \mathbf j, \mathbf k}$ is the standard ordered basis of $\mathbf V$.
The vector cross product, denoted $\mathbf a \times \mathbf b$, is defined as:
- $\mathbf a \times \mathbf b = \begin{vmatrix} \mathbf i & \mathbf j & \mathbf k\\ a_i & a_j & a_k \\ b_i & b_j & b_k \\ \end{vmatrix}$
where $\begin {vmatrix} \ldots \end {vmatrix}$ is interpreted as a determinant.
More directly:
- $\mathbf a \times \mathbf b = \paren {a_j b_k - a_k b_j} \mathbf i - \paren {a_i b_k - a_k b_i} \mathbf j + \paren {a_i b_j - a_j b_i} \mathbf k$
Pages in category "Definitions/Vector Cross Product"
The following 11 pages are in this category, out of 11 total.
V
- Definition:Vector Cross Product
- Definition:Vector Cross Product/Complex
- Definition:Vector Cross Product/Complex/Definition 1
- Definition:Vector Cross Product/Complex/Definition 2
- Definition:Vector Cross Product/Complex/Definition 3
- Definition:Vector Cross Product/Complex/Definition 4
- Definition:Vector Cross Product/Definition 1
- Definition:Vector Cross Product/Definition 2
- Definition:Vector Cross Product/Technical Note