Category:Equivalence of Definitions of Continuous Mapping between Topological Spaces

From ProofWiki
Jump to navigation Jump to search

This category contains pages concerning Equivalence of Definitions of Continuous Mapping between Topological Spaces:

Continuity at a Point

Let $T_1 = \struct {S_1, \tau_1}$ and $T_2 = \struct {S_2, \tau_2}$ be topological spaces.

Let $f: S_1 \to S_2$ be a mapping from $S_1$ to $S_2$.

Let $x \in S_1$.

The following definitions of the concept of continuity at a point of a topological space are equivalent:

Definition using Open Sets

The mapping $f$ is continuous at (the point) $x$ (with respect to the topologies $\tau_1$ and $\tau_2$) if and only if:

For every open set $U_2$ of $T_2$ such that $\map f x \in U_2$, there exists an open set $U_1$ of $T_1$ such that $x \in U_1$ and $f \sqbrk {U_1} \subseteq U_2$.

Definition using Neighborhoods

The mapping $f$ is continuous at (the point) $x$ (with respect to the topologies $\tau_1$ and $\tau_2$) if and only if:

For every neighborhood $N$ of $\map f x$ in $T_2$, there exists a neighborhood $M$ of $x$ in $T_1$ such that $f \sqbrk M \subseteq N$.

Definition using Neighborhood Inverse

The mapping $f$ is continuous at (the point) $x$ (with respect to the topologies $\tau_1$ and $\tau_2$) if and only if:

For every neighborhood $N$ of $\map f x$ in $T_2$, $f^{-1} \sqbrk N$ is a neighborhood of $x$.

Definition using Filters

The mapping $f$ is continuous at (the point) $x$ if and only if:

for any filter $\FF$ on $T_1$ that converges to $x$, the corresponding image filter $f \sqbrk \FF$ converges to $\map f x$.


Continuity Everywhere

Let $T_1 = \struct {S_1, \tau_1}$ and $T_2 = \struct {S_2, \tau_2}$ be topological spaces.

Let $f: S_1 \to S_2$ be a mapping from $S_1$ to $S_2$.


The following definitions of the concept of everywhere continuous mapping between topological spaces are equivalent:

Definition by Pointwise Continuity

The mapping $f$ is continuous everywhere (or simply continuous) if and only if $f$ is continuous at every point $x \in S_1$.


Definition by Open Sets

The mapping $f$ is continuous on $S_1$ if and only if:

$U \in \tau_2 \implies f^{-1} \sqbrk U \in \tau_1$

where $f^{-1} \sqbrk U$ denotes the preimage of $U$ under $f$.

Subcategories

This category has only the following subcategory.

Pages in category "Equivalence of Definitions of Continuous Mapping between Topological Spaces"

The following 3 pages are in this category, out of 3 total.