# Category:Generalized Hilbert Sequence Spaces

Jump to navigation
Jump to search

This category contains results about **Generalized Hilbert Sequence Spaces**.

Let $\alpha$ be an infinite cardinal.

Let $I$ be an indexed set of cardinality $\alpha$.

Let $A$ be the set of all real-valued functions $x : I \to \R$ such that:

- $(1)\quad \set{i \in I: x_i \ne 0}$ is countable
- $(2)\quad$ the generalized sum $\ds \sum_{i \mathop \in I} x_i^2$ is a convergent net.

Let $d_2: A \times A \to \R$ be the real-valued function defined as:

- $\ds \forall x = \family {x_i}, y = \family {y_i} \in A: \map {d_2} {x, y} := \paren {\sum_{i \mathop \in I} \paren {x_i- y_i}^2}^{\frac 1 2}$

The metric space $\struct {A, d_2}$ is the **generalized Hilbert sequence space on $\R$ of weight $\alpha$** and is denoted $H^\alpha$.

## Subcategories

This category has the following 2 subcategories, out of 2 total.

## Pages in category "Generalized Hilbert Sequence Spaces"

The following 2 pages are in this category, out of 2 total.