Champernowne Constant is Transcendental
Jump to navigation
Jump to search
Theorem
- $0 \cdotp 12345 \, 67891 \, 01112 \, 13141 \, 51617 \, 18192 \, 02122 \ldots$
is transcendental.
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Historical Note
The transcendental nature of the Champernowne constant was demonstrated by Kurt Mahler in 1937: Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen (Proc. Konin. Neder. Akad. Wet. Ser. A Vol. 40: pp. 421 – 428).
Sources
- 1937: Kurt Mahler: Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen (Proc. Konin. Neder. Akad. Wet. Ser. A Vol. 40: pp. 421 – 428)
- 1983: François Le Lionnais and Jean Brette: Les Nombres Remarquables ... (previous) ... (next): $0,1234567891011 \ldots$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $0 \cdotp 12345 67891 01112 13141 51617 18192 02122 \ldots$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $0 \cdotp 12345 \, 67891 \, 01112 \, 13141 \, 51617 \, 18192 \, 02122 \ldots$