Chinese Remainder Theorem/Construction of Solution

From ProofWiki
Jump to navigation Jump to search


Recall the Chinese Remainder Theorem:

Let $b_1, b_2, \ldots, b_r \in \Z$.

Let $n_1, n_2, \ldots, n_r$ be pairwise coprime positive integers.

Let $\ds N = \prod_{i \mathop = 1}^r n_i$.

Then the system of linear congruences:

\(\ds x\) \(\equiv\) \(\ds b_1\) \(\ds \pmod {n_1}\)
\(\ds x\) \(\equiv\) \(\ds b_2\) \(\ds \pmod {n_2}\)
\(\ds \) \(\vdots\) \(\ds \)
\(\ds x\) \(\equiv\) \(\ds b_r\) \(\ds \pmod {n_r}\)

has a solution which is unique modulo $N$:

$\exists ! a \in \Z_{>0}: x \equiv a \pmod N$


The following is a systematic technique for finding $a$:

For each $i \in \set {1, 2, \ldots, r}$, calculate:

$y_i = \dfrac N {n_i}$

Using Euclid's Algorithm, calculate $z_i$ such that:

$z_i y_i = 1 \pmod {n_i}$


$x \equiv \ds \sum_{i \mathop = 1}^r b_i y_i z_i$

is a unique solution to the given system of linear congruences.


First we demonstrate that $x$ is a solution.

By construction:

\(\ds \forall j \in \set {1, 2, \ldots, r}: \, \) \(\ds n_j\) \(\divides\) \(\ds y_i\)
\(\ds \leadsto \ \ \) \(\ds y_i\) \(\equiv\) \(\ds 0\) \(\ds \pmod {n_i}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds b_i y_i z_i\) \(\equiv\) \(\ds 0\) \(\ds \pmod {n_i}\)

For each $i \in \set {1, 2, \ldots, r}$, we have:

\(\ds x\) \(\equiv\) \(\ds \sum_{i \mathop = 1}^r b_i y_i z_i\) \(\ds \pmod {n_i}\)
\(\ds \) \(\equiv\) \(\ds b_i y_i z_i\) \(\ds \pmod {n_i}\) from $(1)$: all terms vanish except for one
\(\ds \) \(\equiv\) \(\ds b_i\) \(\ds \pmod {n_i}\) as $y_i z_i \equiv 1$


$\forall i \in \set {1, 2, \ldots, r}: x \equiv b_i \pmod {n_i}$

Thus $x$ is a solution as required.


Now we demonstrate uniqueness up to congruence modulo $N$:

Now suppose there exist $u, v \in \Z$ which are both solutions.


\(\ds \forall j \in \set {1, 2, \ldots, r}: \, \) \(\ds u\) \(\equiv\) \(\ds b_i\) \(\ds \pmod {n_i}\)
\(\ds v\) \(\equiv\) \(\ds b_i\) \(\ds \pmod {n_i}\)
\(\ds \leadsto \ \ \) \(\ds u - v\) \(\equiv\) \(\ds b_i\) \(\ds \pmod {n_i}\)
\(\ds \leadsto \ \ \) \(\ds \forall j \in \set {1, 2, \ldots, r}: \, \) \(\ds n_1\) \(\divides\) \(\ds u - v\)
\(\ds \leadsto \ \ \) \(\ds \prod_{i \mathop = 1}^r n_i\) \(\divides\) \(\ds u - v\) as $n_1, n_2, \ldots, n_r$ are pairwise coprime
\(\ds \leadsto \ \ \) \(\ds u\) \(\equiv\) \(\ds v\) \(\ds \pmod {\prod_{i \mathop = 1}^r n_i}\)
\(\ds \leadsto \ \ \) \(\ds u\) \(\equiv\) \(\ds v\) \(\ds \pmod N\)