Cofactor/Examples

From ProofWiki
Jump to navigation Jump to search

Examples of Cofactors

Arbitrary Example 1

Let $D$ be the determinant defined as:

$D = \begin {vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end {vmatrix}$


Then the cofactor of $2$ is defined as:

\(\ds D_{12}\) \(=\) \(\ds \begin {vmatrix} 4 & 6 \\ 7 & 9 \end {vmatrix}\)
\(\ds \) \(=\) \(\ds \paren {-1}^{2 + 1} \paren {4 \times 9 - 6 \times 7}\)
\(\ds \) \(=\) \(\ds 6\)


Arbitrary Example 2

Let $D$ be the determinant defined as:

$\quad D = \begin {vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end {vmatrix}$


Then the cofactor of $a_{2 1}$ is defined as:

\(\ds A_{21}\) \(=\) \(\ds \paren {-1}^3 D_{21}\)
\(\ds \) \(=\) \(\ds \paren {-1}^3 \begin {vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end {vmatrix}\)
\(\ds \) \(=\) \(\ds -\paren {a_{12} a_{33} - a_{13} a_{32} }\)
\(\ds \) \(=\) \(\ds a_{13} a_{32} - a_{12} a_{33}\)


Arbitrary Example 3

Let $D$ be the determinant defined as:

$\quad D = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ \end{vmatrix}$


Let $\map D {2, 3 \mid 2, 4}$ be an order-$2$ minor of $D$.

Then the cofactor of $\map D {2, 3 \mid 2, 4}$ is given by:

\(\ds \map {\tilde D} {2, 3 \mid 2, 4}\) \(=\) \(\ds \paren {-1}^{2 + 3 + 2 + 4} \map D {1, 4 \mid 1, 3}\)
\(\ds \) \(=\) \(\ds \paren {-1}^{11} \begin {vmatrix} a_{11} & a_{13} \\ a_{41} & a_{43} \\ \end {vmatrix}\)
\(\ds \) \(=\) \(\ds -\paren {a_{11} a_{43} - a_{41} a_{13} }\)
\(\ds \) \(=\) \(\ds a_{41} a_{13} - a_{11} a_{43}\)


Arbitrary Example 4

Let $D$ be the determinant defined as:

$D = \begin {vmatrix} a & b & c \\ d & e & f \\ g & h & i \end {vmatrix}$


The cofactor of $e$ is defined as:

\(\ds A_e\) \(=\) \(\ds A_{22}\)
\(\ds \) \(=\) \(\ds \paren {-1}^4 D_{22}\)
\(\ds \) \(=\) \(\ds \begin {vmatrix} a & c \\ g & i \end {vmatrix}\)
\(\ds \) \(=\) \(\ds \paren {a i - g c}\)


The cofactor of $d$ is defined as:

\(\ds A_d\) \(=\) \(\ds A_{12}\)
\(\ds \) \(=\) \(\ds \paren {-1}^3 D_{12}\)
\(\ds \) \(=\) \(\ds -\begin {vmatrix} b & c \\ h & i \end {vmatrix}\)
\(\ds \) \(=\) \(\ds \paren {c h - b i}\)