Complementary Idempotent of Complementary Idempotent is Idempotent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\HH$ be a Hilbert space.

Let $I$ be an identity operator on $\HH$.

Let $A$ be an idempotent operator.

Let $B$ be the complementary idempotent of A.


Then the complementary idempotent of $B$ is $A$.


Proof

From Complementary Idempotent is Idempotent the complementary idempotent of $B$ is well-defined.


Let $C$ be the complementary idempotent of $B$.

We have:

\(\ds C\) \(=\) \(\ds I - B\) Definition of Complementary Idempotent
\(\ds \) \(=\) \(\ds I - \paren{I - A}\) Definition of Complementary Idempotent
\(\ds \) \(=\) \(\ds A\)

$\blacksquare$