Complex Conjugate Coordinates/Examples/x^2 + y^2 = 36

From ProofWiki
Jump to navigation Jump to search

Example of Complex Conjugate Coordinates

The equation of the circle:

$x^2 + y^2 = 36$

can be expressed in complex conjugate coordinates as:

$z \overline z = 36$


Proof 1

\(\ds x^2 + y^2\) \(=\) \(\ds 36\)
\(\ds \leadstoandfrom \ \ \) \(\ds \paren {x + i y} \paren {x - i y}\) \(=\) \(\ds 36\)
\(\ds \leadstoandfrom \ \ \) \(\ds z \overline z\) \(=\) \(\ds 36\) as $z = x + i y$, $\overline z = x - i y$

$\blacksquare$


Proof 2

We have that:

\(\ds z\) \(=\) \(\ds x + i y\)
\(\ds \overline z\) \(=\) \(\ds x - i y\)

and so:

\(\ds x\) \(=\) \(\ds \frac {z + \overline z} 2\)
\(\ds y\) \(=\) \(\ds \frac {z - \overline z} {2 i}\)


Hence:

\(\ds \paren {\frac {z + \overline z} 2}^2 + \paren {\frac {z - \overline z} {2 i} }^2\) \(=\) \(\ds 36\)
\(\ds \leadstoandfrom \ \ \) \(\ds \paren {\frac {z^2 + 2 z \overline z + \overline z^2} 4} + \paren {\frac {z^2 - 2 z \overline z + \overline z^2} {4 i^2} }\) \(=\) \(\ds 36\)
\(\ds \leadstoandfrom \ \ \) \(\ds \frac {z^2 - z^2 + 2 z \overline z + 2 z \overline z + \overline z^2 - \overline z^2} 4\) \(=\) \(\ds 36\)
\(\ds \leadstoandfrom \ \ \) \(\ds z \overline z\) \(=\) \(\ds 36\)

$\blacksquare$