Complex Roots of Unity/Examples/6th Roots

From ProofWiki
Jump to navigation Jump to search

Example of Complex Roots of Unity

The complex $6$th roots of unity are the elements of the set:

$U_n = \set {z \in \C: z^6 = 1}$


They are:

\(\ds e^{0 i \pi / 6}\) \(=\) \(\ds 1\)
\(\ds e^{i \pi / 3}\) \(=\) \(\ds \frac 1 2 + \frac {i \sqrt 3} 2\)
\(\ds e^{2 i \pi / 3}\) \(=\) \(\ds -\frac 1 2 + \frac {i \sqrt 3} 2\)
\(\ds e^{i \pi}\) \(=\) \(\ds -1\)
\(\ds e^{4 i \pi / 3}\) \(=\) \(\ds -\frac 1 2 - \frac {i \sqrt 3} 2\)
\(\ds e^{5 i \pi / 3}\) \(=\) \(\ds \frac 1 2 - \frac {i \sqrt 3} 2\)


Proof

By definition, the first complex $6$th root of unity $\alpha$ is given by:

\(\ds \alpha\) \(=\) \(\ds e^{2 i \pi / 6}\)
\(\ds \) \(=\) \(\ds e^{i \pi / 3}\)
\(\ds \) \(=\) \(\ds \cos \frac \pi 3 + i \sin \frac \pi 3\)
\(\ds \) \(=\) \(\ds \frac 1 2 + i \frac {\sqrt 3} 2\) Cosine of $\dfrac \pi 3$, Sine of $\dfrac \pi 3$


We have that:

$e^{0 i \pi / 6} = e^0 = 1$

which gives us, as always, the zeroth complex $n$th root of unity for all $n$.


The remaining complex $6$th roots of unity follow:

\(\ds \alpha^2\) \(=\) \(\ds \paren {\frac 1 2 + i \frac {\sqrt 3} 2}^2\)
\(\ds \) \(=\) \(\ds \paren {\frac 1 2}^2 + 2 i \cdot \frac 1 2 \cdot \frac {\sqrt 3} 2 + \paren {i \frac {\sqrt 3} 2}^2\)
\(\ds \) \(=\) \(\ds \frac 1 4 + i \frac {\sqrt 3} 2 - \frac 3 4\)
\(\ds \) \(=\) \(\ds -\frac 1 2 + i \frac {\sqrt 3} 2\)


\(\ds \alpha^3\) \(=\) \(\ds e^{6 i \pi / 6}\)
\(\ds \) \(=\) \(\ds e^{i \pi}\)
\(\ds \) \(=\) \(\ds -1\) Euler's Identity


\(\ds \alpha^4\) \(=\) \(\ds \overline {\alpha^{6 - 4} }\) Complex Roots of Unity occur in Conjugate Pairs
\(\ds \) \(=\) \(\ds \overline {\alpha^2}\)
\(\ds \) \(=\) \(\ds \overline {-\frac 1 2 + i \frac {\sqrt 3} 2}\)
\(\ds \) \(=\) \(\ds -\frac 1 2 - i \frac {\sqrt 3} 2\) Definition of Complex Conjugate


\(\ds \alpha^5\) \(=\) \(\ds \overline {\alpha^{6 - 5} }\) Complex Roots of Unity occur in Conjugate Pairs
\(\ds \) \(=\) \(\ds \overline {\alpha}\)
\(\ds \) \(=\) \(\ds \overline {\frac 1 2 + i \frac {\sqrt 3} 2}\)
\(\ds \) \(=\) \(\ds \frac 1 2 - i \frac {\sqrt 3} 2\) Definition of Complex Conjugate

$\blacksquare$


Illustration

From Complex Roots of Unity are Vertices of Regular Polygon Inscribed in Circle the complete set of complex $6$th roots of unity can be depicted as the vertices of the following regular hexagon:


Complex-6th-Roots-of-1.png


where $\alpha$ is used to denote the first complex $6$th root of unity.


Sources