Composition of Sequentially Computable Real-Valued Functions is Sequentially Computable

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $D \subseteq \R^n$ and $E \subseteq \R^m$ be subsets of real cartesian space.

Let $f : D \to \R$ be sequentially computable.

Let $g_1, g_2, \dotsc, g_n : E \to \R$ be sequentially computable.

Suppose that, for every $\bsx \in E$:

$\tuple {\map {g_1} \bsx, \map {g_2} \bsx, \dotsc, \map {g_n} \bsx} \in D$


Then $h : E \to \R$ defined as:

$\map h {x_1, \dotsc, x_m} = \map f {\map {g_1} {x_1, \dotsc, x_m}, \dotsc, \map {g_n} {x_1, \dotsc, x_m}}$

is sequentially computable.


Proof

Let $\tuple {\sequence {x_{1,k}}_k, \dotsc, \sequence {x_{m,k}}_k}$ be an $m$-tuple of computable real sequences in $E$.

By definition of sequentially computable:

$\sequence {\map {g_i} {x_{1,k}, \dotsc, x_{m,k}}}_k$ is sequentially computable

for every $1 \le i \le n$

Additionally, for every $k$:

$\tuple {\map {g_1} {x_{1,k}, \dotsc, x_{m,k}}, \dotsc, \map {g_n} {x_{1,k}, \dotsc, x_{m,k}}} \in D$

by assumption.

Therefore:

$\tuple {\sequence {\map {g_1} {x_{1,k}, \dotsc, x_{m,k}}}_k, \dotsc, \sequence {\map {g_n} {x_{1,k}, \dotsc, x_{m,k}}}_k}$

is an $n$-tuple of computable real sequences in $D$.


Hence, by definition of sequentially computable:

$\sequence {\map f {\map {g_1} {x_{1,k}, \dotsc, x_{m,k}}, \dotsc, \map {g_n} {x_{1,k}, \dotsc, x_{m,k}}}}_k$

is computable.

But, for every $k \in \N$:

$\map f {\map {g_1} {x_{1,k}, \dotsc, x_{m,k}}, \dotsc, \map {g_n} {x_{1,k}, \dotsc, x_{m,k}}} = \map h {x_{1,k}, \dotsc, x_{m,k}}$

Therefore:

$\sequence {\map h {x_{1,k}, \dotsc, x_{m,k}}}_k$

is computable.


As $\tuple {\sequence {x_{1,k}}_k, \dotsc, \sequence {x_{m,k}}_k}$ was arbitrary, it follows that $h$ is sequentially computable by definition.

$\blacksquare$