Conditions under which Commutative Semigroup is Group/Lemma 3

From ProofWiki
Jump to navigation Jump to search

Lemma for Conditions under which Commutative Semigroup is Group

Suppose the following:

Let $\struct {S, \circ}$ be a commutative semigroup.


Let $\struct {S, \circ}$ have the following properties:

\((1)\)   $:$     \(\ds \forall x \in S: \exists y \in S:\) \(\ds y \circ x = x \)      
\((2)\)   $:$     \(\ds \forall x, y \in S:\) \(\ds y \circ x = x \implies \exists z \in S: z \circ x = y \)      


Then:

If $y \circ x = x$ and $z \circ w = w$, then $y = z$.


Proof

\(\ds \paren {y \circ x} \circ w\) \(=\) \(\ds x \circ w\) by hypothesis: $y \circ x = x$
\(\ds \leadsto \ \ \) \(\ds y \circ \paren {x \circ w}\) \(=\) \(\ds x \circ w\) Semigroup Axiom $\text S 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds y \circ \paren {w \circ x}\) \(=\) \(\ds w \circ x\) as $\struct {S, \circ}$ is a commutative semigroup: $x \circ w = w \circ x$


Then:

\(\ds \paren {z \circ w} \circ x\) \(=\) \(\ds w \circ x\) by hypothesis: $z \circ w = w$
\(\ds \leadsto \ \ \) \(\ds z \circ \paren {w \circ x}\) \(=\) \(\ds w \circ x\) Semigroup Axiom $\text S 1$: Associativity


Thus:

$y \circ \paren {w \circ x} = w \circ x = z \circ \paren {w \circ x}$

and $y = z$ follows from Lemma 1.

$\blacksquare$


Sources