Conjunction is Equivalent to Negation of Conditional of Negative/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$p \land q \dashv \vdash \neg \paren {p \implies \neg q}$


This can be expressed as two separate theorems:

Forward Implication

$p \land q \vdash \neg \paren {p \implies \neg q}$

Reverse Implication

$\neg \paren {p \implies \neg q} \vdash p \land q$


Proof by Truth Table

We apply the Method of Truth Tables.

As can be seen by inspection, the truth values under the main connectives match for all boolean interpretations.

$\begin{array}{|ccc||ccccc|} \hline p & \land & q & \neg & (p & \implies & \neg & q) \\ \hline \F & \F & \F & \F & \F & \T & \T & \F \\ \F & \F & \T & \F & \F & \T & \F & \T \\ \T & \F & \F & \F & \T & \T & \T & \F \\ \T & \T & \T & \T & \T & \F & \F & \T \\ \hline \end{array}$

$\blacksquare$


Sources