Contradictory Antecedent
Jump to navigation
Jump to search
Theorem
An implication with a contradiction as antecedent:
- $\bot \implies p \dashv \vdash \top$
Proof by Natural Deduction
By the tableau method of natural deduction:
Line | Pool | Formula | Rule | Depends upon | Notes | |
---|---|---|---|---|---|---|
1 | 1 | $\bot \implies p$ | Premise | (None) | ||
2 | $\top$ | Rule of Top-Introduction: $\top \II$ | (None) |
$\Box$
By the tableau method of natural deduction:
Line | Pool | Formula | Rule | Depends upon | Notes | |
---|---|---|---|---|---|---|
1 | 1 | $\bot$ | Assumption | (None) | ||
2 | 2 | $\top$ | Premise | (None) | ||
3 | 1 | $p$ | Rule of Explosion: $\bot \EE$ | 1 | ||
4 | $\bot \implies p$ | Rule of Implication: $\implies \II$ | 1 – 3 | Assumption 1 has been discharged |
$\blacksquare$
Proof by Truth Table
We apply the Method of Truth Tables to the proposition.
As can be seen by inspection, in each case, the truth values in the appropriate columns match for all boolean interpretations.
$\begin{array}{|c|ccc||c|} \hline p & \bot & \implies & p & \top \\ \hline \F & \F & \T & \F & \T \\ \T & \F & \T & \T & \T \\ \hline \end{array}$
$\blacksquare$
Also see
Sources
- 2012: M. Ben-Ari: Mathematical Logic for Computer Science (3rd ed.) ... (previous) ... (next): $\S 2.3.3$