Convergent Sequence in Normed Vector Space is Weakly Convergent/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \norm \cdot}$ be a normed vector space.

Let $x \in X$.

Let $\sequence {x_n}_{n \mathop \in \N}$ be a sequence in $X$ converging to $x$.


Then $\sequence {x_n}_{n \mathop \in \N}$ converges weakly to $x$.


Proof

Let $\struct {X^\ast, \norm \cdot_{X^\ast} }$ be the normed dual space of $\struct {X, \norm \cdot}$.

Then, for each $f \in X^\ast$:

\(\ds \size {\map f {x_n} - \map f x}\) \(\le\) \(\ds \norm f_{X^\ast} \norm {x_n - x}_X\) Fundamental Property of Norm on Bounded Linear Functional
\(\ds \) \(\) \(\ds \stackrel{n \to \infty}{\longrightarrow} 0\)

$\blacksquare$