Coset Product is Well-Defined/Proof 1
Jump to navigation
Jump to search
Theorem
Let $\struct {G, \circ}$ be a group.
Let $N$ be a normal subgroup of $G$.
Let $a, b \in G$.
Then the coset product:
- $\paren {a \circ N} \circ \paren {b \circ N} = \paren {a \circ b} \circ N$
is well-defined.
Proof
Let $N \lhd G$ where $G$ is a group.
Let $a, a', b, b' \in G: a \circ N = a' \circ N, b \circ N = b' \circ N$.
To show that the coset product is well-defined, we need to demonstrate that $\paren {a \circ b} \circ N = \paren {a' \circ b'} \circ N$.
So:
\(\ds a \circ N\) | \(=\) | \(\ds a' \circ N\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds a^{-1} \circ a'\) | \(\in\) | \(\ds N\) | Cosets are Equal iff Product with Inverse in Subgroup | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds b^{-1} \circ a^{-1} \circ a'\) | \(\in\) | \(\ds b^{-1} \circ N\) | Definition of Subset Product | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds b^{-1} \circ a^{-1} \circ a'\) | \(\in\) | \(\ds N \circ b^{-1}\) | $N$ is a normal subgroup | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists n \in N: \, \) | \(\ds b^{-1} \circ a^{-1} \circ a'\) | \(=\) | \(\ds n \circ b^{-1}\) | Definition of Subset Product | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {a \circ b}^{-1} \circ \paren {a' \circ b'}\) | \(=\) | \(\ds n \circ b^{-1} \circ b'\) | Group Properties | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {a \circ b}^{-1} \circ \paren {a' \circ b'}\) | \(\in\) | \(\ds N\) | Definition of Subset Product |
By Cosets are Equal iff Product with Inverse in Subgroup:
- $\paren {a \circ b}^{-1} \circ \paren {a' \circ b'} \in N \implies \paren {a \circ b} \circ N = \paren {a' \circ b'} \circ N$
and the proof is complete.
$\blacksquare$