Cosine of Integer Multiple of Argument/Formulation 3

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \Z_{>0}$:

\(\ds \cos n \theta\) \(=\) \(\ds \cos \paren {n - 1} \theta \cos \theta + \paren {1 - \sec^2 \theta} \cos^n \theta \paren {1 + 1 + \frac {\cos 2 \theta} {\cos^2 \theta} + \frac {\cos 3 \theta} {\cos^3 \theta} + \cdots + \frac {\cos \paren {n - 2} \theta} {\cos^{n - 2} \theta} }\)
\(\ds \) \(=\) \(\ds \cos \paren {n - 1} \theta \cos \theta + \paren {1 - \sec^2 \theta} \cos^n \theta \sum_{k \mathop = 0}^{n - 2} \frac {\cos k \theta} {\cos^k \theta}\)


Proof

\(\ds \cos n \theta\) \(=\) \(\ds \map \cos {\paren {n - 1} \theta + \theta}\)
\(\ds \) \(=\) \(\ds \cos \paren {n - 1} \theta \cos \theta - \sin \paren {n - 1} \theta \sin \theta\) Cosine of Sum
\(\ds \) \(=\) \(\ds \cos \paren {n - 1} \theta \cos \theta - \paren {\sin \theta \cos^{n - 2} \theta \sum_{k \mathop = 0}^{n - 2} \frac {\cos k \theta} {\cos^k \theta} } \sin \theta\) Sine of Integer Multiple of Argument: Formulation 3
\(\ds \) \(=\) \(\ds \cos \paren {n - 1} \theta \cos \theta - \paren {\sin^2 \theta \cos^{n - 2} \theta \sum_{k \mathop = 0}^{n - 2} \frac {\cos k \theta} {\cos^k \theta} }\)
\(\ds \) \(=\) \(\ds \cos \paren {n - 1} \theta \cos \theta - \paren {\paren {1 - \cos^2 \theta} \cos^{n - 2} \theta \sum_{k \mathop = 0}^{n - 2} \frac {\cos k \theta} {\cos^k \theta} }\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \cos \paren {n - 1} \theta \cos \theta + \paren {\paren {\cos^2 \theta - 1} \cos^{n - 2} \theta \sum_{k \mathop = 0}^{n - 2} \frac {\cos k \theta} {\cos^k \theta} }\)
\(\ds \) \(=\) \(\ds \cos \paren {n - 1} \theta \cos \theta + \paren {1 - \sec^2 \theta} \cos^n \theta \sum_{k \mathop = 0}^{n - 2} \frac {\cos k \theta} {\cos^k \theta}\) Secant is Reciprocal of Cosine

$\blacksquare$