Cyclic Group of Order 8 is not isomorphic to Group of Units of Integers Modulo n

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $n \in \Z_{\ge 0}$ be an integer.

Let $\struct {\Z / n \Z, +, \cdot}$ be the ring of integers modulo $n$.

Let $U = \struct {\paren {\Z / n \Z}^\times, \cdot}$ denote the group of units of $\struct {\Z / n \Z, +, \cdot}$.

Let $C_8$ denote the cyclic group of order $8$


Then:

$U$ and $C_8$ are not isomorphic.


Proof 1

Lemma

There are only $5$ numbers $n$ with the property that $\map \phi n = 8$, and they are $15$, $16$, $20$, $24$ and $30$.

$\Box$


Aiming for a contradiction, suppose $U$ and $C_8$ are isomorphic.

$\order U = \order {C_8} = 8$

From Order of Group of Units of Integers Modulo n we have that

$8 = \order U = \map \phi n$

where $\phi$ denotes the Euler $\phi$-function.


From the Lemma:

there are $5$ numbers $n$ with the property that $\map \phi n = 8$, and they are $15$, $16$, $20$, $24$ and $30$.


Hence:

\(\ds \paren {\Z / 15 \Z}^\times\) \(\simeq\) \(\ds \paren {\Z / 3 \Z}^\times \times \paren {\Z / 5 \Z}^\times\) Chinese Remainder Theorem: Corollary
\(\text {(1)}: \quad\) \(\ds \) \(\simeq\) \(\ds C_2 \times C_4\) Cyclicity Condition for Units of Ring of Integers Modulo $n$ and $\map \varphi 3 = 2, \map \varphi 5 = 4$


\(\ds \paren {\Z / 16 \Z}^\times\) \(\simeq\) \(\ds \paren {\Z / 2^4 \Z}^\times\)
\(\ds \) \(\simeq\) \(\ds C_2 \times C_4\) Isomorphism between Group of Units Ring of Integers Modulo $2^n$ and $C_2 \times C_{2^{n - 2} }$


\(\ds \paren {\Z / 20 \Z}^\times\) \(\simeq\) \(\ds \paren {\Z / 2^2 \Z}^\times \times \paren {\Z / 5 \Z}^\times\) Chinese Remainder Theorem: Corollary
\(\ds \) \(\simeq\) \(\ds C_2 \times \paren {\Z / 5 \Z}^\times\) Isomorphism between Group of Units Ring of Integers Modulo $2^n$ and $C_2 \times C_{2^{n - 2} }$
\(\ds \) \(\simeq\) \(\ds C_2 \times C_4\) Cyclicity Condition for Units of Ring of Integers Modulo $n$ and $\phi$ of $5$ $\map \varphi 5 = 4$


\(\ds \paren {\Z / 24 \Z}^\times\) \(\simeq\) \(\ds \paren {\Z / 2^3 \Z}^\times \times \paren {\Z / 3 \Z}^\times\) Chinese Remainder Theorem: Corollary
\(\ds \) \(\simeq\) \(\ds C_2 \times C_2 \times \paren {\Z / 3 \Z}^\times\) Isomorphism between Group of Units Ring of Integers Modulo $2^n$ and $C_2 \times C_{2^{n - 2} }$
\(\ds \) \(\simeq\) \(\ds C_2 \times C_2 \times C_2\) Cyclicity Condition for Units of Ring of Integers Modulo $n$ and $\phi$ of $3$: $\map \varphi 3 = 2$


\(\ds \paren {\Z / 30 \Z}^\times\) \(\simeq\) \(\ds \paren {\Z / 2 \Z}^\times \times \paren {\Z / 15 \Z}^\times\) Chinese Remainder Theorem: Corollary
\(\ds \) \(\simeq\) \(\ds \set 1 \times \paren {\Z / 15 \Z}^\times\) $\phi$ of $2$: $\map \phi 2 = 1$
\(\ds \) \(\simeq\) \(\ds C_2 \times C_4\) from $(1)$


Therefore, no multiplicative group of integers mod $n$ is isomorphic to $C_8$.

$\blacksquare$


Proof 2

Aiming for a contradiction, suppose $U$ and $C_8$ are isomorphic.

$\order U = \order {C_8} = 8$

From Order of Group of Units of Integers Modulo n we have that

$8 = \order U = \map \phi n$

where $\phi$ denotes the Euler $\phi$-function.

$\map \phi 1 = \map \phi 2 = 1$, so $n > 2$.

By Cyclicity Condition for Units of Ring of Integers Modulo n, either:

$n = p^\alpha$

or:

$n = 2 p^\alpha$

where $p \ge 3$ is prime and $\alpha \ge 1$.

In either case, we get

$8 = \map \phi n = p^{\alpha - 1} \paren{p - 1}$

so $p - 1 \divides 8$, but $p \ge 3$, so $p \in \set {3,5}$.

If $p = 3$, we get:

$8 = 3^{\alpha - 1}\times 2$

contradiction.

If $p = 5$, we get:

$8 = 5^{\alpha - 1}\times 4$

contradiction.

$\blacksquare$