Definition:Bounded Lattice Homomorphism

From ProofWiki
Jump to navigation Jump to search

Definition

Let $L_1 = \struct{S_1, \vee_1, \wedge_1, \preceq_1}$ be a bounded lattice with greatest element $\top_1$ and smallest element $\bot_1$

Let $L_2 = \struct{S_2, \vee_2, \wedge_2, \preceq_2}$ be a bounded lattice with greatest element $\top_2$ and smallest element $\bot_2$


Let $f: \struct{S_1, \vee_1, \wedge_1, \preceq_1} \to \struct{S_2, \vee_2, \wedge_2, \preceq_2}$ be a lattice homomorphism.


Then:

$f$ is a bounded lattice homomorphism from $L_1$ to $L_2$, denoted $f:L_1 \to L_2$

if and only if:

$f$ preserves the identities:
\((3)\)   $:$   Preserve smallest element       \(\ds \map f {\bot_1} \)   \(\ds = \)   \(\ds \bot_2 \)      
\((4)\)   $:$   Preserve greatest element       \(\ds \map f {\top_1} \)   \(\ds = \)   \(\ds \top_2 \)      


That is, $f$ is a bounded lattice homomorphism from $L_1$ to $L_2$ if and only if

the bounded lattice homomorphism axioms are satisfied:
\((1)\)   $:$   Join morphism property      \(\ds \forall x, y \in S_1:\)    \(\ds \map f {x \vee_1 y} \)   \(\ds = \)   \(\ds \map f x \vee_2 \map f y \)      
\((2)\)   $:$   Meet morphism property      \(\ds \forall x, y \in S_1:\)    \(\ds \map f {x \wedge_1 y} \)   \(\ds = \)   \(\ds \map f x \wedge_2 \map f y \)      
\((3)\)   $:$   Preserve smallest element       \(\ds \map f {\bot_1} \)   \(\ds = \)   \(\ds \bot_2 \)      
\((4)\)   $:$   Preserve greatest element       \(\ds \map f {\top_1} \)   \(\ds = \)   \(\ds \top_2 \)      


Also known as

Some authors insist that a lattice have identity elements, and so refer to a bounded lattice homomorphism simply as a lattice homomorphism.

Other authors denote the smallest element and greatest element of a bounded lattice as $0$ and $1$ respectively, and so refer to a bounded lattice homomorphism as a $\set{0, 1}$-lattice homomorphism


Sources