Definition:Convergent Sequence/Analysis
Jump to navigation
Jump to search
Definition
Real Numbers
Let $\sequence {x_k}$ be a sequence in $\R$.
The sequence $\sequence {x_k}$ converges to the limit $l \in \R$ if and only if:
- $\forall \epsilon \in \R_{>0}: \exists N \in \R_{>0}: n > N \implies \size {x_n - l} < \epsilon$
where $\size x$ denotes the absolute value of $x$.
Rational Numbers
Let $\sequence {x_k}$ be a sequence in $\Q$.
$\sequence {x_k}$ converges to the limit $l \in \R$ if and only if:
- $\forall \epsilon \in \R_{>0}: \exists N \in \R_{>0}: n > N \implies \size {x_n - l} < \epsilon$
where $\size x$ is the absolute value of $x$.
Complex Numbers
Let $\sequence {z_k}$ be a sequence in $\C$.
$\sequence {z_k}$ converges to the limit $c \in \C$ if and only if:
- $\forall \epsilon \in \R_{>0}: \exists N \in \R: n > N \implies \cmod {z_n - c} < \epsilon$
where $\cmod z$ denotes the modulus of $z$.
Note on Domain of $N$
Some sources insist that $N \in \N$ but this is not strictly necessary and can make proofs more cumbersome.